Open Access Open Access  Restricted Access Subscription or Fee Access

Genetic Algorithms: Tuning of Parameter K for the Labeling Diversity Problem in Wireless Communications

(*) Corresponding author

Authors' affiliations



Recently, the Genetic Algorithm (GA) has been developed to produce Labeling Diversity (LD) mapper designs irrespective of constellation size or shape. However, the parameter space of the GA has not been investigated thoroughly. This paper investigates the parameter space of a GA by parameter varying the parameter K. Tuning results show that the parameter K should be set such that K ≤ 4 to achieve close-to-optimal mapper designs in significantly less time. Monte Carlo simulations illustrate that when K = 1, 2, 3 the 16-APSK constellation exhibits a ≈ 1dB gain over all other values of K. The 64-APSK constellation is a peculiar case such that close-to-optimal mapper designs are achieved in terms of fitness values but perform equally to other values of K. Thus, in order to design a close-to-optimal mapper design in the least possible time, the value of K should be K ≤ 4. Furthermore, this study provides a deeper insight into developing more accurate mapper design GAs for future works.
Copyright © 2022 The Authors - Published by Praise Worthy Prize under the CC BY-NC-ND license.


Wireless Communications; Tuning; Identification; Labeling Diversity; USTLD

Full Text:



H. Xu, K. Govindasamy, and N. Pillay, Uncoded Space-Time Labelling Diversity, IEEE Communic. Lett., vol. 20, no. 8, pp. 1511-1514, Aug. 2016.

S. M. Alamouti, A simple transmit diversity technique for wireless communications, in IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

H. Samra, Z. Ding, and P. Hahn, Symbol Mapping Diversity Design for Multiple Packet Transmissions, IEEE Trans. Communic., vol. 53, no. 5, pp. 810-817, May 2005.

S. S. Patel, T. Quazi, H. Xu, A Genetic Algorithm for Uncoded Space-Time Labelling Diversity Mapper Design, IEEE Int. Workshop Sig. Proc. Syst., Cape Town, South Africa, pp 77 - 82, Aug. 2018.

Solwa, S. A performance study of a genetic algorithm based mapper design for uncoded space-time labeling diversity. Trans Emerging Tel Tech. 2022; 33(4):e4435.

S. Forrest. Genetic algorithms: principles of natural selection applied to computation, Science, vol. 261, no. 5123, pp 872 - 878, Aug. 1993.

S. M. Shorman, S. A. Pitchay, Significance of parameters in genetic algorithm, the strengths, its limitations and challenges in image recovery., ARPN J. Eng. Appl. Sci., vol. 10, n. 2, pp 585 - 593, Feb. 2015.

Y. Wang and K. Fan, Applying genetic algorithms on pattern recognition: an analysis and survey, Proceedings of 13th International Conference on Pattern Recognition, 1996, pp. 740-744 vol.2.

Vose and Michael D. 1999. The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge, MA.

Koza J., Forest B., David Andre and Martin Keane. 1999. Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers.

R. E. Mercer, J. R. Sampson (1978), Adaptive Search Using A Reproductive Meta-Plan, Kybernetes, vol. 7 no. 3, pp. 215-228.

J. J. Grefenstette, Optimization of Control Parameters for Genetic Algorithms, in IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 122-128, Jan. 1986.

V. Nannen, A. E. Eiben. A method for parameter calibration and relevance estimation in evolutionary algorithms, Proceedings of the 8th annual conference on Genetic and evolutionary computation, Seattle, Washington, USA, pp 183-190, Jul. 2006.

Thomas Bartz-Beielstein and Sandor Markon. Tuning search algorithms for real-world applications: A regression tree based approach. Technical Report of the Collaborative Research Centre 531 Computational Intelligence CI-172/04, University of Dortmund, March 2004.

S. Solwa and D. O. Ayanda, A modified global neighbourhood algorithm for designing labelling diversity mappers, Trans. on Emerging Telecomm. Tech, 2022, In Press.

S. Solwa, An ordered crossover based approach to designing labelling diversity mappers, Trans. on Emerging Telecomm. Tech, vol. 33, no. 10, Apr. 2022.

M. K. Elrnezughi, T. J. Afullo, and N. O. Oyie, Performance Study of Path Loss Models at 14, 18, and 22 GHz in an Indoor Corridor Environment for Wireless Communications, SAIEE Afr. Res. J., vol. 112, pp. 32-45, Mar. 2021.

M. K. Elmezughi and T. J. Afullo, Evaluation of Line-of-Sight Probability Models for Enclosed Indoor Environments at 14 to 22 GHz, icABCD2021. Conf., IEEE, Sep. 2021, pp. 1-7.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, Millimeter Wave Mobile Communications for 5G Cellular: It will Work! IEEE Access, vol. 1, pp. 335-349, May 2013.

T. S. Rappaport, G. R. Maccartney, M. K. Samimi, and S. Sun, Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design, IEEE Trans. Commun., vol. 63, no. 9, pp. 3029-3056, Sep. 2015.

Elmezughi MK, Salih O, Afullo TJ, Duffy KJ. Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels. Sensors. 2022; 22(13):4967.

Abidi, M., Fizazi, H., Boudali, N., Clustering of Remote Sensing Data Based on Spherical Evolution Algorithm, (2021) International Review of Aerospace Engineering (IREASE), 14 (2), pp. 72-79.

Zainuddin, F., Abd Samad, M., A Mating Technique for Various Crossover in Genetic Algorithm for Optimum System Identification, (2021) International Review of Mechanical Engineering (IREME), 15 (11), pp. 574-581.

Torres, C., Suárez F., C., Ramos M., L., Puerto L., G., Synthesis of Asymmetric Radiation Patterns with Non-Uniform Linear Arrays Using Evolutionary Algorithms, (2020) International Journal on Communications Antenna and Propagation (IRECAP), 10 (6), pp. 408-418.

Gupta, K., Dhanda, N., Kumar, U., A Novel Approach to Brain Tumor Detection Using Texture Based Gabor Filter Followed by Genetic Algorithm, (2021) International Journal on Communications Antenna and Propagation (IRECAP), 11 (4), pp. 233-241.

S. Solwa, M. K. Elmezughi, A. J. Bamisaye, D. Ayanda, A. Almaktoof and M. T. E. Kahn, Genetic Algorithm-Based Uncoded M-ary Phase Shift Keying Space-Time Labelling Diversity with Three Transmit Antennas for Future Wireless Networks, 2022 9th International Conference on Electrical and Electronics Engineering (ICEEE), 2022, pp. 423-428.

M. K. Elmezughi and T. J. Afullo, An Efficient Approach of Improving Path Loss Models for Future Mobile Networks in Enclosed Indoor Environments, IEEE Access, vol. 9, pp. 110332-110345, Aug. 2021.

S. Solwa, A. J. Bamisaye, A meta-parameter tuning model to improve genetic algorithms design of labelling diversity mappers, International Journal of Modeling, Simulation, and Scientific Computing, 2021, pp. 2250035.

S. Solwa, A. J. Bamisaye, D. O. Ayanda, A multi-optimization-based genetic algorithm mapper design for three transmit uncoded space-time diversity systems, International Journal of Modeling, Simulation, and Scientific Computing, 2022, pp. 2350003.

Ayanda, D, Xu, H, Pillay, N. Uncoded M-ary quadrature amplitude modulation space-time labeling diversity with three transmit antennas. International Journal of Communication Syst. 2018; 31:e3818.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize