Open Access Open Access  Restricted Access Subscription or Fee Access

Electrically Small Metamaterial Inspired Monopole Antenna Using Double Negative Metamaterial and Ring Resonators


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v11i6.21233

Abstract


This paper proposes a new metamaterial inspired electrically small multi-band monopole antenna. The proposed antenna can operate at DCS 1800 in the lower band and covers two wireless local area network (WLAN) bands in the higher band. This paper describes the design and a detailed analysis of the electrically small antenna, where the compactness is achieved by the application of double negative metamaterial on a monopole antenna and multiband operation is achieved by the addition of two ring resonators. The ground structure is modified for giving proper impedance matching at lower bands. Moreover, an additional double negative structure of similar design is also incorporated to enhance its gain. A comparative study of the proposed antenna with other reported electrically small antennas is summarized and analyzed. A prototype of the proposed antenna is fabricated on a low cost substrate and experimentally validated.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Double Negative Metamaterial; Monopole Antenna; Electrically Small Antenna; DCS; WLAN; Multiband Antenna

Full Text:

PDF


References


A. A. Salih and M. S. Sharawi, A Dual-Band Highly Miniaturized Patch Antenna, IEEE Antennas and Wireless Propagation Letters, volume 15, 2016, Pages 1783-1786,
https://doi.org/10.1109/LAWP.2016.2536678

L. Liu and B. Wang, A Broadband and Electrically Small Planar Monopole Employing Metamaterial Transmission Line, IEEE Antennas and Wireless Propagation Letters, volume 14, 2015, Pages 1018-1021.
https://doi.org/10.1109/LAWP.2015.2388762

Rikikumar Patel, Arpan Desai, and Trushit K. Upadhyaya, An Electrically Small Antenna Using Defected Ground Structure for RFID, GPS and IEEE 802.11 a/b /g /S Applications, Progress In Electromagnetics Research Letters, Volume 75, 2018, Pages 75-81.
https://doi.org/10.2528/PIERL18021901

Sussman-Fort S. E, Matching network design using non-Foster impedances, Wiley. International Journal of RF and Microwave Computer-Aided Engineering, Volume 16, (Issue 2), 2006, Pages 135-142.
https://doi.org/10.1002/mmce.20118

Sussman-Fort S. E. and Rudish R. M, Non-Foster impedance matching of electrically-small antennas, IEEE Transactions on Antennas and Propagation, Volume 57, (Issue 8), 2009, Pages 2230-2241.
https://doi.org/10.1109/TAP.2009.2024494

Ruiyang Li, Gao Wei1, and Derek McNamara, A Method for Matching Parasitic Unidirectional Electrically Small Array, Progress In Electromagnetics Research Letters, Volume 76, 2018, Pages 121-126.
https://doi.org/10.2528/PIERL18041705

Erentok, A.and Ziolkowski, R. W, Metamaterial-inspired efficient electrically small antennas, IEEE Transactions on Antennas and Propagation, Volume 57, (Issue 3), 2008, Pages 691-707.
https://doi.org/10.1109/TAP.2008.916949

Pradeep, A., Mridula, S., Mohanan, P., Metamaterial Based All Purpose Sensor Antenna, (2013) International Journal on Communications Antenna and Propagation (IRECAP), 3 (3), pp. 181-184.

Saleh, G., Dual Resonant Wearable Metamaterial for Medical Applications, (2021) International Journal on Communications Antenna and Propagation (IRECAP), 11 (2), pp. 85-93.
https://doi.org/10.15866/irecap.v11i2.19856

McLean J.S., A Re-examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas, IEEE Transactions on Antennas and Propagation, Volume 44, (Issue 5), May 1996, Page.672.
https://doi.org/10.1109/8.496253

R. M. Fano, Theoretical Limitations on the Broadband Matching of Arbitrary Impedances, J. Franklin Inst., Volume 249, Jan. 1950, Pages 139-155.
https://doi.org/10.1016/S0016-0032(50)91101-X

H. Bode, Network Analysis and Feedback Amplifier Design, New York: Van Nostrand, 1947, Page 367.

D. C. Youla, A New Theory of Broadband Matching, IEEE Transactions on Circuit Theory, Volume CT-11, Mar. 1964.
https://doi.org/10.1109/TCT.1964.1082267

Antoniades, M. A.and Eleftheriades, G. V., A broadband dual-mode monopole antenna using NRI-TL metamaterial loading, IEEE Antennas and Wireless Propagation Letters, Volume 8, 2009, Pages 258-261,
https://doi.org/10.1109/LAWP.2009.2014402

Setijadi, E., Handayani, P., Mirza C. S., R., Mutual Coupling Reduction of 1×2 Microstrip Array Antenna Using MMAS-SSR, (2019) International Journal on Communications Antenna and Propagation (IRECAP), 9 (4), pp. 263-270.
https://doi.org/10.15866/irecap.v9i4.16024

M. Barbuto, A. Monti, F. Bilotti, and A. Toscano, Design of a non-Foster actively loaded SRR and application in metamaterial-inspired components, IEEE Transactions on Antennas and Propagation, Volume 61, (Issue 3), Mar. 2013, Pages 1219-1227.
https://doi.org/10.1109/TAP.2012.2228621

B. D. Bala, M. K. A. Rahim, and N. A. Murad, Small electrical metamaterial antenna based on coupled electric field resonator with enhanced bandwidth, Electron. Lett., Volume 50, (Issue 3), Jan. 2014, Pages 138-139.
https://doi.org/10.1049/el.2013.3884

Ameen, M., S. Kalraiya, and R. K. Chaudhary, CPW-fed electrically small dual-polarized short-ended ZOR antenna using Ω-shaped capacitor and single-split ring resonator for GPS/WiMAX/WLAN/C-band applications, International Journal of RF and Microwave Computer-Aided Engineering (RFMiCAE), Volume. 29, (Issue 12),, Article No. 21946, 2019.
https://doi.org/10.1002/mmce.21946

Ameen, M. and R. K. Chaudhary, Metamaterial CP antenna: A new technique for bandwidth-enhanced circularly polarized ZOR antenna based on ENG-TL backed coupled SSR with AMC metasurface, IEEE Antennas and Propagation Magazine, 2019.

Ameen, M., A. Mishra, and R. K. Chaudhary, Dual-layer and dual-polarized metamaterial inspired antenna using circular-complementary split ring resonator mushroom and metasurface for wireless applications, AEU - International Journal of Electronics and Communications, Volume 113, Article No. 152977, Elsevier, 2020.
https://doi.org/10.1016/j.aeue.2019.152977

Muhammad I. Magray1, Gulur S. Karthikeya, Khalid Muzaffar, and Shiban K. Koul, Electrically Small ACS-Fed Flipped MIMO Antenna for USB Portable Applications, Progress In Electromagnetics Research C, Volume 95, 2019, Pages 141-152.
https://doi.org/10.2528/PIERC19071003

A. Sohrabi, H. Dashti, J. and Ahmadi-Shokouh, Design and analysis of a Broadband electrically small antenna using characteristic mode theory, International Journal of Electronics and Communications (2019).
https://doi.org/10.1016/j.aeue.2019.152991

Sonak R, Ameen M, Chaudhary RK. Triple band omnidirectional miniaturized metamaterial inspired antenna using flipped rectangular stub for LTE, WiMAX, and WLAN applications. Int J RF Microwave Comput Aided Eng. 2019;29(7):e21721-1-e21721-9.
https://doi.org/10.1002/mmce.21721

P. Kumar, T. Ali and M. M. M. Pai, Electromagnetic Metamaterials: A New Paradigm of Antenna Design, in IEEE Access, volume 9, 2021, Pages 18722-18751,
https://doi.org/10.1109/ACCESS.2021.3053100

Kucukoner, E. M. et al. Electrical Size Reduction of Microstrip Antennas by Using Defected Ground Structures Composed of Complementary Split Ring Resonator. Advanced Electromagnetics, Volume 10, 2021, Pages 62-69.
https://doi.org/10.7716/aem.v10i1.1556

Sharma, S. K., Abdalla, M. A., & Hu, Z. Miniaturization of an Electrically Small Metamaterial Inspired Antenna Using Additional Conducting Layer. IET Microwaves, Antennas and Propagation, Volume 12, (Issue 8),2018, Pages 1444-1449.
https://doi.org/10.1049/iet-map.2017.0927

Rengasamy R, RajeshKumar V, Phani Kumar KV. An electrically small inverted L-shaped asymmetric coplanar strip-fed antenna with split-ring resonator for multiband applications. Int J Commun Syst. 2021;e4983.
https://doi.org/10.1002/dac.4983

Shaji B. K., A., Pradeep, A., Mohanan, P., Fractal Inspired Metamaterial Superstrate for Gain Enhancement, (2021) International Journal on Communications Antenna and Propagation (IRECAP), 11 (4), pp. 271-278.
https://doi.org/10.15866/irecap.v11i4.20861

Thankachan S, Paul B, Pradeep A and Moolat R. Design and Characterisation of Simple Planar Metamaterial Structure with Double Negative Properties, TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), 2019, Pages 1231-1235.
https://doi.org/10.1109/TENCON.2019.8929653

Chu LJ. Physical limitations of omni-directional antennas. J Appl Physiol. Volume 19, 1948, Pages 1163-1175.
https://doi.org/10.1063/1.1715038

Fujimoto K. and Morishita H., Fundamental limitations of small antennas, (In Modern Small Antennas, Cambridge: Cambridge University Press, 2014).
https://doi.org/10.1017/CBO9780511977602

R. W. Ziolkowski and A. D. Kipple, Application of double negative materials to increase the power radiated by electrically small antennas, IEEE Transactions on Antennas and Propagation, Volume 51, (Issue 10), Oct. 2003, Pages 2626-2640.
https://doi.org/10.1109/TAP.2003.817561

Harrington RF, Effect of antenna size on gain, bandwidth, and efficiency. J Res Natl Bur Stand D Radio Propag. Volume 64D, 1960, Pages 1-12.
https://doi.org/10.6028/jres.064D.003


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize