Open Access Open Access  Restricted Access Subscription or Fee Access

A Deep Learning System for the Diagnosis of Heart Problems from ECG Media Files


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v11i5.21132

Abstract


Heart diseases are a major illness worldwide. There is a need for an accurate and reliable diagnosis procedure, which should not put heavy burden on the already overwhelmed medical staff, always available, and easily accessible, for people with high risk of heart diseases. Machine learning has the ability to learn from large amounts of data, and it may offer accurate and reliable diagnosis of new data. In this paper, two convolutional neural network (CCN) architectures have been evaluated, i.e AlexNet and GoogleNet, in order to help diagnosing four heart conditions: Arrhythmia (ARR), Atrial Fibrillation (AF), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR). A dataset of Electrocardiogram (ECG) Media files for heart related problems is fed into a deep learning (CNN) module to learn features and link them to corresponding labels. Results have showed that this technique is promising and could provide reliable solution to quick and reliable diagnosis of heart conditions, with an accuracy of 97.6%.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


CNN; Deep Learning; ARR; AF; CHF; NSR

Full Text:

PDF


References


I. Kononenko, Machine learning for medical diagnosis: history, state of the art and perspective, Artificial Intelligence in medicine, Volume. 23, (Issue. 1), 2001, pp. 89-109.
https://doi.org/10.1016/S0933-3657(01)00077-X

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
https://doi.org/10.1109/CVPR.2016.90

E. A. Ashley and J. Niebauer, Cardiology explained, (Remedica 2004).

J. Wu, Y. Yu, C. Huang, and K. Yu, Deep multiple instance learning for image classification and autoannotation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3460-3469, 2015.
https://doi.org/10.1109/CVPR.2015.7298968

Cardiovascular diseases, Accessed: May 20th, 2020. [Online].
Available: https://www.who.int/healthtopics/cardiovascular-diseases/

D. Papavassiliou, N. R. Doelling, M. K. Bowman, H. Yeung, J. Rock, B. Klas, K. Chung, and D. A. Fyfe, Initial experience with an internally rotating transthoracic three-dimensional echocardiographic probe and image acquisition on a conventional echocardiogram machine, Echocardiography, Volume. 23, (Issue. 4), 1998, pp. 369-376.
https://doi.org/10.1111/j.1540-8175.1998.tb00618.x

M. A. Santos, R. Munoz, R. Olivares, P. P. R. Filho, J. D. Ser, and V. H. C. de Albuquerque, Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook, Information Fusion, Volume. 53, 2020, pp. 222-239.
https://doi.org/10.1016/j.inffus.2019.06.004

A. M. Taylor, Cardiac imaging: MR or CT? Which to Use When, Pediatric radiology, Volume. 38, 2008, pp. 433.
https://doi.org/10.1007/s00247-008-0843-8

S. Deepa, B. A. Devi et al., A survey on artificial intelligence approaches for medical image classification, Indian Journal of Science and Technology, Volume. 4, (Issue.11), 2011, pp. 1583-1595.
https://doi.org/10.17485/ijst/2011/v4i11.35

Tolebi, G., Dairbekov, N., Kurmankhojayev, D., Link Flow Estimation on an Isolated Intersection Based on Deep Learning Models, (2020) International Review of Automatic Control (IREACO), 13 (1), pp. 19-26.
https://doi.org/10.15866/ireaco.v13i1.18213

Pinzon Arenas, J., Jimenez Moreno, R., Hernandez Beleño, R., EMG Signal Acquisition and Processing Application with CNN Testing for MATLAB, (2018) International Review of Automatic Control (IREACO), 11 (1), pp. 44-51.
https://doi.org/10.15866/ireaco.v11i1.13379

Jimenez-Moreno, R., Martinez, D., A Novel Parallel Convolutional Network Architecture for Depth-Dependent Object Recognition, (2019) International Review of Automatic Control (IREACO), 12 (2), pp. 76-81.
https://doi.org/10.15866/ireaco.v12i2.16467

Pinzón-Arenas, J., Jiménez-Moreno, R., Pachón-Suescún, C., Handwritten Word Searching by Means of Speech Commands Using Deep Learning Techniques, (2019) International Review on Modelling and Simulations (IREMOS), 12 (4), pp. 253-263.
https://doi.org/10.15866/iremos.v12i4.17166

E. H. Houssein, M. Kilany, and A. E. Hassanien, ECG signals classification: a review, International Journal of Intelligent Engineering Informatics, Volume. 5, (Issue 4), 2017, pp. 376-396.
https://doi.org/10.1504/IJIEI.2017.087944

A. Isin and S. Ozdalili, Cardiac arrhythmia detection using deep learning, Procedia computer science, Volume 120, 2017, pp. 268-275.
https://doi.org/10.1016/j.procs.2017.11.238

Q. Li, C. Rajagopalan, and G. D. Clifford, A machine learning approach to multi-level ecg signal quality classification, Computer methods and programs in biomedicine, Volume 117, (Issue 3), 2014, pp. 435-447.
https://doi.org/10.1016/j.cmpb.2014.09.002

M. M. Al Rahhal, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani, and R. R. Yager, Deep learning approach for active classification of electrocardiogram signals, Information Sciences, Volume 345, 2016, pp. 340-354.
https://doi.org/10.1016/j.ins.2016.01.082

V. H. C. de Albuquerque, T. M. Nunes, D. R. Pereira, E. J. d. S. Luz, D. Menotti, J. P. Papa, and J. M. R. Tavares, Robust automated cardiac arrhythmia detection in ecg beat signals, Neural Computing and Applications, Volume. 29, (Issue 3), 2018, pp. 679-693.
https://doi.org/10.1007/s00521-016-2472-8

M. Li, S. Dong, Z. Gao, C. Feng, H. Xiong,W. Zheng, D. Ghista, H. Zhang, and V. H. C. de Albuquerque, Unified model for interpreting multi-view echocardiographic sequences without temporal information, Applied Soft Computing, Volume 88, 2020, pp. 106049.
https://doi.org/10.1016/j.asoc.2019.106049

R. Bousseljot, D. Kreiseler, and A. Schnabel, Use of the ptb's ekg signal database cardiodat (Nutzung der ekg-signaldatenbank CARDIODAT der PTB uber das internet). Volume 40 (Issue s1), 1995, pp. 317-318.
https://doi.org/10.1515/bmte.1995.40.s1.317

O. P. Yadav and S. Ray, Smoothening and segmentation of ECG signals using total variation denoising- minimization-majorization and bottom-up approach, Procedia Computer Science, Volume. 85, 2016, pp. 483-489.
https://doi.org/10.1016/j.procs.2016.05.195

C. Saritha, V. Sukanya, and Y. N. Murthy, ECG signal analysis using wavelet transforms, Bulg. J. Phys, Volume. 35, (Issue 1), 2008, pp. 68-77.

C. Saxena, H. Gupta, and P. Murarka, Noise reduction in ecg signals using notch filter, International Journal of Computer Sciences and Engineering, Volume 5, 2017, pp. 147-150.
https://doi.org/10.26438/ijcse/v5i8.147150

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, Volume 25, 2012, pp. 1097-1105.

P. P. Sengupta, Y.-M. Huang, M. Bansal, A. Ashrafi, M. Fisher, K. Shameer, W. Gall, and J. T. Dudley, Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy, Circulation: Cardiovascular Imaging, Volume. 9, (Issue 6), 2016 pp. e004330.
https://doi.org/10.1161/CIRCIMAGING.115.004330

Kaissari, S., El Attaoui, A., Benba, A., Jilbab, A., Bourouhou, A., Kaissari, A., PlanTech: Early Detection of Plant Disease Based on HWSN Using Deep Learning, (2021) International Journal on Engineering Applications (IREA), 9 (3), pp. 162-172.
https://doi.org/10.15866/irea.v9i3.20720

Fawa'reh, M., Qasaimeh, M., AbuArja, I., Al-Fayoumi, M., Mitigating Deep learning Attacks Against Text Image CAPTCHA Using Arabic Scheme, (2021) International Journal on Communications Antenna and Propagation (IRECAP), 11 (4), pp. 288-296.
https://doi.org/10.15866/irecap.v11i4.20375


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize