Open Access Open Access  Restricted Access Subscription or Fee Access

Graphene Logo Patch Antenna

(*) Corresponding author

Authors' affiliations



Graphene with its unique electrical, mechanical and physical properties provides a platform for novel electronic systems design. A compact patch Logo antenna based on doped Graphene is proposed for its operation within GHz range. Various antenna parameters such as S11 parameter, Bandwidth, Gain, Directivity and Efficiency are obtained and compared with results obtained from a copper conductive patch antenna. The designed antenna is an elliptical shape patch with the dimension of 25×16 mm and is designed over 1.6 mm thick polyimide substrate to provide the flexibility required for a wide range of applications, from wearable to medical electronics. Various parametric plots for Graphene such as dispersion diagram, conductivity as a function of its DC bias, surface impedance and comparison of skin depth with copper conductive media have been obtained for its inclusion in a 3D field solver tool. Finally a spice circuit has been obtained for the S11 parameter of the graphene and copper conductive patch antenna for its 3D field solver equivalence.
Copyright © 2018 Praise Worthy Prize - All rights reserved.


Antenna; Copper; GHz; Graphene; Logo; Patch; Spice

Full Text:



G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, Microwave propagation in graphene, Appl. Phys. Lett., Volume 95, 2009, Pages 073107.

A. K. Geim, and K. S. Novoselov, The rise of graphene. Nature Mater. Volume 6, 2007, Pages 183–191.

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo and M. F. Craciun, Novel highly conductive and transparent graphene-based conductors, Adv. Mater., Volume 24, 2012, Pages 2844–2849.

T. H. Bointon, S. Russo and M. F. Craciun, Is graphene a good transparent electrode for photovoltaics and display applications?, IET Circuits Devices Syst., Volume 9, Issue 6, 2015, Pages 403–412.

F. Schwierz, Graphene Transistors: Status, Prospects, and Problems, in Proceedings of the IEEE, Volume. 101, 2013, Pages 1567–1584.

D. Akinwande; N. Petrone; and J. Hone, Two-Dimensional Flexible Nanoelectronics, Nat. Commun, Volume 5, 2014, Pages 5678.

K. S. Novoselova, Graphene: The Magic of Flat Carbon, ECS Trans., Volume 19, 2009, Pages 3–7.

G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Doping graphene with metal contacts, Phys. Rev. Lett., Volume 101, 2008, Pages 026803.

A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. Volume 81, 2009, Pages 109–162.

F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, Graphene photonics and optoelectronics. Nature Photon., Volume 4, 2010, Pages 611–622.

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes and carbon nanotubes. San Diego, London: Academic Press, 1996.

P. R. Wallace, The Band Theory of Graphite, Physical Review, Volume 71, 1947, Pages 622.

R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes. London, UK: Imperial College Press, 2003.

M. J. Allen, V.C. Tung and R. B. Kaner, Honeycomb carbon: a review of graphene, Chem Rev., Volume 110, 2009, Pages 132–45.

T. Stauber, N. M. Peres, and A. K. Geim, Optical conductivity of graphene in the visible region of the spectrum, Physical Review B, Volume 78, 2008, Pages 085432.

S. A. Mikhailov and K. Ziegler. New electromagnetic mode in graphene. Physical Review Letters, Volume 99, 2007, Pages 016803

G. W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys., Volume 103, 2008, Pages 064302.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene. Science, Volume 320, 2008, Pages 1308.

X. Qin, J. Chen, C. Xie, N. Xu and J. Shi, A tunable THz dipole antenna based on graphene, 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, 2016, pp. 1–3.

J. S. Gomez-Diaz and J. Perruisseau-Carrier, Microwave to THz properties of Graphene and potential antenna applications, 2012 International Symposium on Antennas and Propagation (ISAP), Nagoys, 2012, pp. 239–242.

M. Qu, M. Rao, S. Li, and L. Deng, Tunable antenna radome based on graphene frequency selective surface, American Institute of Physics, Volume 7, 2017, Pages 095307.

R. Wang, S. Raju, M. Chan, and L. J. Jiang, Low frequency behavior of CVD graphene from DC to 40 GHz, Progress In Electromagnetics Research C, Volume 71, 2017, Pages 1–7.

J. Perruisseau-Carrier, M. Tamagnone, J. S. Gomez-Diaz, and E. Carrasco, Graphene antennas: Can integration and reconfigurability compensate for the loss?, in European Microwave Conference (EuMC)(IEEE, 2013), pp. 369–372.

M. Dragoman, D. Neculoiu, A.-C. Bunea, G. Deligeorgis, M. Aldrigo, D. Vasilache, A. Dinescu, G. Konstantinidis, D. Mencarelli, L. Pierantoni, and M. Modreanu, A tunable microwave slot antenna based on graphene, Appl. Phys. Lett., Volume 106, 2015, Pages 153101.

L. M. Malard, K. F. Mak, A. H. C. Neto, N. M. R. Peres and T. F. Heinz, Observation of intra- and inter-band transitions in the transient optical response of graphene, New Journal of Physics, Volume 15, 2013, Pages 015009.

J. S. Gomez-Diaz, J. Perruisseau-Carrier, P. Sharma, and A. Ionescu, Non-contact characterization of graphene surface impedance at micro and millimeter waves, J. Appl. Phys., Volume 111, 2012, Pages 114908.

Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das-Sarma, H. L. Stormer and P. Kim, Measurement of scattering rate and minimum conductivity in graphene, Phys. Rev. Lett., Volume 99, 2007, Pages 246803.

L. Hao, J. Gallop, S. Goniszewski1, A. Gregory, O. Shaforost, N. Klein and R. Yakimova, Non-contact method for measurement of the microwave conductivity of graphene, Appl. Phys. Lett. Volume 103, 2013, Pages 123103.

H. A. Wheeler, Formulas for the skin effect, Proc. IRE, Volume. 30, 1942, Pages 412–424.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D.-I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene, Appl. Phys. Lett., Volume 102, 2013, Pages 191109.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz Scientific Reports, Volume 4, 2014, Pages 4130.

S. Sajal, B. D. Braaten, T. Tolstedt, S. Asif, and M. J. Schroeder, Design of a conformal Monopole antenna on a paper substrate using the properties of graphene-based conductors, Microwave and Optical Technology Letters, Volume 59, 2017, Pages 1279–1283.

A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel. Universal optical conductance of graphite. Physical Review Letters, Volume 100, 2008, Pages 117401.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize