Open Access Open Access  Restricted Access Subscription or Fee Access

Improving the Frequency Range of Franklin’s Antenna


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irecap.v7i5.12425

Abstract


This research shows a numerical simulation of the well-structured Franklin’s antenna and a proposed model with a wider frequency band. The simulation was performed by a program built using the integral equation method (the most precise method for simulating wired antennas). It has been demonstrated that the proposed model, with an induction point positioned on the shorted stub, has a better match with the feeding line than when it is fed on the central midpoint of the central dipole. All the obtained determinants are new and can be used in the design of antennas that possess an isotropic radiation pattern at the magnetic plane and a high directivity at the electric plane. The simulation program was utilized to design the automobile antenna studied at the University of Kalamoon.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Gain; Input Impedance; Pocklington’s Integral Equation; Radiation Pattern; Voltage Standing Wave Ratio

Full Text:

PDF


References


C. A. Balanis, Antenna theory (John Wiley and Sons, 2005).

C. A. Balanis, Advanced Engineering Electromagnetics (John Wiley and Sons, 1989).

J. R. Kraus, Antennas for all applications (McGraw-Hill, 2002).

J. K. Volakis, Antenna engineering handbook (McGraw-Hill, 2007).

H. Jasik, Antenna engineering handbook (McGraw-Hill, 1961).

W. L. Stutsman, G. A. Thiele, Antenna theory, and design (John Wiley and Sons, 2005).

C. S. Franklin. Brit. The Patent, 242342-1924, 1924.

M. Polivka, A. Holub, M. Mazanek, Collinear microstrip patch antenna, radio-engineering, volume 14, dec. 2005, pages 40-42.

C. H. Kuo, C. C. Lin, J. S. Sun, Modified microstrip Franklin array antenna for automotive short-range radar application in blind spot information system, IEEE Trans. Antenna propagate, volume 16, February 2017, pages 1731-1734.
http://dx.doi.org/10.1109/lawp.2017.2670231

P. Hamouz, P. Hazdra, M. Polivka, M. Capek, M. Mazanek, Radiation efficiency and Q factor study of Franklin antenna using the theory of characteristic modes, Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on., Rome, Italy, April 2011, pages 1974-1977.
http://dx.doi.org/10.1049/ic.2007.1257

J. D. Franklin, H. H. Gregory, A micro air vehicle design based on a wideband antenna. Antenna and propagate. & USNC/URSI national radio science meeting, IEEE international symposium, July 2015.
http://dx.doi.org/10.1109/aps.2015.7305103

H. H. Meinel, Evolving automotive radar-from the very beginnings into the future, Proc. 18th Eur. Conf. Antenna propagate., pp. 3107-3114, April 2014.
http://dx.doi.org/10.1109/eucap.2014.6902486

V. Rabinovich, N. Alexandrov, Introduction in antenna array automotive applications (Springer, 2013, pp. 1-18).
http://dx.doi.org/10.1007/978-1-4614-1074-4_1

G. K. Mitropoulos, U. K. Uzunoglu, Multielement Marconi-Franklin type printed antennas for millimeter wireless systems, IEEE Trans. Antenna propagate., volume.54, (Issue 6), June 2006, pages 1618-1623.
http://dx.doi.org/10.1109/tap.2006.875519

F. R. Hsiao, K. L. Wong, The omnidirectional planar folded dipole antenna, IEEE Trans. Antennas propagate, volume 52, (Issue 7), July 2004, pages 1898-1902.
http://dx.doi.org/10.1109/tap.2004.831337

K. Solbach, Microstrip Franklin antenna. IEEE Trans. Antennas propagate, volume 30, (Issue 4), Jul 1982, pages 773-775.
http://dx.doi.org/10.1109/tap.1982.1142845

K. S. Khan, Microwave engineering concepts and fundamentals (CRC press, 2014).
http://dx.doi.org/10.1002/qre.430

R. Mitra, Computer techniques for electromagnetic (Oxford, New York, Toronto, Sydney, Braunschwieg, 1973).
http://dx.doi.org/10.1093/chromsci/12.11.22a-b

J. R. Stratton, Electromagnetic Theory (McGraw-Hill, 1948).
http://dx.doi.org/10.1002/9781119134640

A. A. Alrifai, Numerical Simulation of the Properties of the Scattering Array Antennas Consisting of Dipole and Loop Antennas, Ph.D. dissertation, Dept. Antenna and UHF Devices, Belarus State University of Informatics and Radio Electronic, 2008.
http://dx.doi.org/10.1049/pbew035e_ch4

Bou-El-Harmel, A., Benbassou, A., Belkadid, J., Design of a Three-Dimensional Antenna UHF in the Form Cubic Intended for RFID, Wireless Sensor Networks (WSNs) and RFID Sensor Networks (RSNs) Applications, (2014)International Journal on Communications Antenna and Propagation (IRECAP), 4 (6), pp. 260-264.
http://dx.doi.org/10.15866/irecap.v4i6.4915

Ahola, J., Vartiainen, E., Lindh, T., Särkimäki, V., Tiainen, R., A Tool for Phase Spectrum Retrieval from Impedance Amplitude Spectrum, (2014) International Journal on Communications Antenna and Propagation (IRECAP), 4 (2), pp. 44-50.

Zahraoui, I., Errkik, A., Abdelmounim, E., Bennis, H., El Abdellaoui, L., Mediavilla Sanchez, A., A New Design of a CPW Fed Triple-Band for GPS, UMTS and WiMAX Applications, (2015) International Journal on Communications Antenna and Propagation (IRECAP), 5 (6), pp. 337-340.
http://dx.doi.org/10.15866/irecap.v5i6.7663


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize