Low Complexity Method for DOA Estimation Based on Nystrom Method
(*) Corresponding author
DOI: https://doi.org/10.15866/irecap.v7i3.10885
Abstract
The capacity to resolve closely spaced sources is one of the important issues of direction of arrival estimation algorithms. For this issue, we present a reduced subspace method based on invariance of noise subspace to the power of radiating sources. Unlike the conventional subspace methods, we use Eigen-values of reduced noise subspace to estimate direction of arrival of narrowband sources with a large array. Our approach is based on the Nystrom method. The main advantage of this method is its low computational complexity. Simulations show that the performances of the proposed method are superior to those of MUSIC when the sources are close and with power level differences between them.
Copyright © 2017 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
Harry L. Van Trees, Optimum Array Processing, chap.1, John Wiley, 2002.
http://dx.doi.org/10.1002/0471221104
H. Krim and M. Viberg. Two decades of array signal processing research: the parametric approach, IEEE Signal Processing Magazine. Volume. 13, (issue 4), pages. 67–94, 1996.
http://dx.doi.org/10.1109/79.526899
J. Razavilar, F. Rashid-Farrokhi, K.J.R. Liu. Traffic improvements in wireless communication networks using antenna arrays, IEEE Journal. Selected Areas Commu. Volume.18, (issue 3), pages 458–471, 2000.
http://dx.doi.org/10.1109/49.840204
Samarah, K., Localization of Mobile Stations from ONE Base Station in GSM Systems, (2016) International Review on Computers and Software (IRECOS), 11 (5), pp. 427-435.
http://dx.doi.org/10.15866/irecos.v11i5.9367
Nemri, N., Ghayoula, R., Badri, H., Trabelsi, H., Gharsallah, A., Wireless Localization Using TDOA-DOA, (2015) International Journal on Communications Antenna and Propagation (IRECAP), 5 (6), pp. 354-361.
http://dx.doi.org/10.15866/irecap.v5i6.7625
Elkamchouchi, H., Mohamed, D., Mohamed, O., Ali, W., Multiuser Detection Using Blind Robust Beamforming in Multipath Environment for LTE System, (2016) International Journal on Communications Antenna and Propagation (IRECAP), 6 (5), pp. 291-298.
http://dx.doi.org/10.15866/irecap.v6i5.10006
Ben Messaoud, M., Bouzid, A., Optimization of Subspace Decomposition Applied to Speech Dereverberation, (2016) International Journal on Communications Antenna and Propagation (IRECAP), 6 (1), pp. 1-5.
http://dx.doi.org/10.15866/irecap.v6i1.7509
R.O.Schmidt. Multiple emitter location and signal parameter estimation, IEEE Trans on Antennas and Propagations. Volume. 34, (issue 3), 1986, pages. 276–280.
http://dx.doi.org/10.1109/tap.1986.1143830
H. Clergeot, A. Ouamri, S. Tressens. High resolution spectral method for spatial discrimination of closely spaced correlated sources, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP 85. Volume. 10, 1985 pages. 560 – 563.
http://dx.doi.org/10.1109/icassp.1985.1168366
R. Roy and T. Kailath. ESPRIT estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acoust, Speech, Signal Process. Volume. 37, (issue 7), 1989, pages. 984-995.
http://dx.doi.org/10.1109/29.32276
H. Clergeot; S. Tressens; A. Ouamri. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds, IEEE Transactions on Acoustics, Speech, and Signal Processing. Volume.37, (issue11), 1989, pages.1703 – 1720.
http://dx.doi.org/10.1109/29.46553
P.Stoica, K. C.Sharman. Maximum likelihood methods for direction of arrival estimation, IEEE Trans. Acoust. Speech Signal Process. Volume.39, (issue 7), 1990, pages. 1132-1143.
http://dx.doi.org/10.1109/29.57542
P. Stoica, A. Nehorai. MUSIC, maximum likelihood and Cramer-Rao bound, IEEE Trans. Acoust. Speech Signal Process, Volume. 37, (issue 5), 1989, pages.720–741.
http://dx.doi.org/10.1109/ICASSP.1989.267001
S. Marcos, A. Marsal, M. Benidir. The propagator method for source bearing estimation, Elsevier Signal Processing. Volume. 42, (issue. 2), 1995, pages. 121–138.
http://dx.doi.org/10.1016/0165-1684(94)00122-g
Ali Olfat, Said Nader-Esfahani. A new signal subspace processing for DOA estimation, Elsevier Signal Processing. Volume. 84, (issue. 4), 2004, pages.721 – 728.
http://dx.doi.org/10.1016/0165-1684(94)00122-G
Y. Guo, Wei Li, J. Shen, X. Xu, J.Zhang, Y. Zuo. A Low Complexity Algorithm for DOA Estimation Based on Reduced-Rank Covariance Matrix, Antennas and Propagation (APCAP), 2014 3rd Asia-Pacific Conference. 2014, pages. 686 – 689.
http://dx.doi.org/10.1109/icspcc.2014.6986152
Qian C, Huang . A low-complexity Nyström-based algorithm for array subspace estimation, Instrumentation, Measurement, Computer, Communication and Control (IMCCC), 2012 Second International Conference on IEEE, 2012, pages. 112-114.
http://dx.doi.org/10.1109/imccc.2012.33
Qian C, Huang L, So H C. Computationally efficient ESPRIT algorithm for direction-of-arrival estimation based on Nyström method, Elsevier Signal Processing. Volume. 94, 2014, pages.74-80.
http://dx.doi.org/10.1016/j.sigpro.2013.05.007
A. Nicholas and W.J. Patrick. Estimating principal components of large covariance matrices using the Nystrom method, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pages.3784-3787.
http://dx.doi.org/10.1109/icassp.2011.5947175
C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nystrom method, IEEE Transactions on Pattern Analysis and Machine Intelligence. Volume. 26, (issue. 2), 2004, pages 1–12.
http://dx.doi.org/10.1109/tpami.2004.1262185
C.K.I. Williams, M. Seeger. Using the Nyström method to speed up kernel machines, Advances in Neural Information Processing Systems 2000, pages.682-688.
http://dx.doi.org/10.1080/07313560050129107
J. Shi, J. Malik. Normalized cuts and image segmentation, IEEE Trans on Pattern Analysis and Machine Intelligence. Volume. 22, (issue.8), 2000, pages.888–905.
http://dx.doi.org/10.1109/34.868688
G.Liu,H.Chen,X.Sun, R.C.Qiu. Modified MUSIC Algorithm for DOA estimation With Nystrom Approximation, IEEE Sensors Journal. Volume. 16, (issue. 12), 2016, pages. 4673 – 4674.
http://dx.doi.org/10.1109/jsen.2016.2557488
M. Lin, F. Wang, and C. Zhang. Large-scale eigenvector approximation via Hilbert space embedding Nyström, Pattern Recognit. Volume. 48, (issue. 5), 2014, pages. 1904–1912.
http://dx.doi.org/10.1016/j.patcog.2014.11.017
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize