Open Access Open Access  Restricted Access Subscription or Fee Access

2D FDTD Simulation to Study Response of GPR Signals in Homogeneous and Inhomogeneous Mediums

Gamil Alsharahi(1*), Ahmed Faize(2), Aye Mint Mohamed Mostapha(3), Abdellah Driouach(4)

(1) Department of Physic, Abdelmalek Essaâdi University, Faculty of Sciences, Morocco
(2) Department of Physic, Mohammed 1st University, Faculty Polydisciplinarly, Morocco
(3) Department of Physic, Abdelmalek Essaâdi University, Faculty of Sciences, Morocco
(4) Department of Physic, Abdelmalek Essaâdi University, Faculty of Sciences, Morocco
(*) Corresponding author


DOI: https://doi.org/10.15866/irecap.v6i3.9276

Abstract


The aims of this paper are the study of response signals of the Ground PenetratingRadar (GPR) and the development of one numerical code in order to improve the efficiency of thesimulation and to compare the obtained results by different softwares (GprMax2D/3D andReflexw). The first software is free while the other is not and it is expensive. The work presentedhere examines objects buried in homogenous and inhomogeneous dielectrics mediums using 400MHz and 800 MHz antennas, in order to study the influence the mediums on the detected signals.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


2D FDTD; Simulation; Response; GPR Signals

Full Text:

PDF


References


NurulJihan.F, Computational Methods for Processing Ground Penetrating Radar Data, these 2013.

Andrea Benedetto, Civil Engineering Applications of Ground Penetrating Radar, Springer Transactions in Civil and Environmental Engineering, 2015.
http://dx.doi.org/10.1007/978-3-319-04813-0

Domenica De Domenico, Antonio Teramo, FDTD modelling in high-resolution 2D and 3D GPR surveys on a reinforced concrete column in a double wall of hollow bricks, Near Surface Geophysics, 2013, 11, 29-40.
http://dx.doi.org/10.3997/1873-0604.2012047

GamilAlsharahi, simulation of GPR scenarios using FDTD Journal of Theoretical and Applied Information Technology 31st August 2015. Vol.78. No.3.

GamilAlsharahi, Effect of Electrical Conductivity and Dielectric Constant on the Performance of Ground Penetrating Radar, International journal of microwave and optical technology,vol.10, no.6, November 2015.

A. Giannopoulos, Modelling ground penetrating radar by GprMax, Construction and Building Materials 19 (2005)
http://dx.doi.org/10.1016/j.conbuildmat.2005.06.007

T.M. Millington n, N.J. Cassidy, Optimising GPR modelling: A practical, multi-threaded approach to 3D FDTD numerical modelling, Computers & Geosciences 36 (2010) 1135–1144.
http://dx.doi.org/10.1016/j.cageo.2009.12.006

Alexis Shakas , NiklasLinde, Effective modeling of ground penetrating radar in fractured media using analytic solutions for propagation, thin-bed interaction and dipolar scattering, Journal of Applied Geophysics 116 (2015) 206–214.
http://dx.doi.org/10.1016/j.jappgeo.2015.03.018

Ping Wang, Zhenqi Hu, Yanling Zhao, Xinju Li, Experimental study of soil compaction effects on GPR signals, Journal of Applied Geophysics (2016).
http://dx.doi.org/10.1016/j.jappgeo.2016.01.019

M. Solla, R. Asorey-Cacheda, X. Núñez-Nieto, B. Conde-Carnero, Evaluation of historical bridges through recreation of GPR models with the FDTD algorithm, NDT and E International 2015.
http://dx.doi.org/10.1016/j.ndteint.2015.09.003

Bernhard Lampe, Finite-Difference Time-Domain Modeling of Ground-Penetrating Radar Antenna Systems, DISS. ETH NO. 15261, 2003.

G. Klysz , X. Ferrier's, J.P. Balayssac, S. Laurens, Simulation of direct wave propagation by numerical FDTD
http://dx.doi.org/10.1016/j.ndteint.2005.10.001

for a GPR coupled antenna, NDT&E International 39 (2006) 338–347.
http://dx.doi.org/10.1016/j.ndteint.2005.10.001

Tillard S, Dubois JC. Analysis of GPR data: wave propagation velocity determination. J Appl Geophys 1995; 33:77–91.
http://dx.doi.org/10.1016/0926-9851(95)90031-4

Robert W. Jacob, Ground-Penetrating Radar Velocity Determination and Precision Estimates Using Common-Midpoint (CMP) Collection with Hand-Picking, Semblance Analysis, and Cross-Correlation Analysis: a Case Study and Tutorial for Archaeologists, Becknell University Becknell Digital Commons, 2015.
http://dx.doi.org/10.1111/arcm.12214

Derald G. Smith, Harry M. Jol, Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in Quaternary sediments, Journal of Applied Geophysics 33 (1995) 93-100.
http://dx.doi.org/10.1016/0926-9851(95)90032-2

FawzyAbujarad, Ground penetrating radar signal processing for landmine detection, 2007.
http://dx.doi.org/10.1109/isccsp.2008.4537200

MehennaouiNaziha, Etude théorique de la propagation des ondes électromagnétiques dans les milieux hétérogènes

- Application au radar Sol, 2009.

Arnaud LOUIS, Détection de zones humides dans le béton par GroundPenetrating Radar (GPR) en présence d’un gradient d’humidité, 2011.

Nigel J. Cassidy, Ground Penetrating Radar Data Processing, Modelling and Analysis, Ground Penetrating Radar Theory and Applications, Theory and Applications 2009, Pages 141–176.
http://dx.doi.org/10.1016/b978-0-444-53348-7.00005-3

Olivier Loeffler, « Modélisation géoradar de la proche surface, estimation de la teneur en eau et influence d’un polluant », thèse de doctorat, université Louis Pasteur-Strasbourg I, 04 février 2005.

Fayçal REJIBA, Modélisation de la propagation des ondes électromagnétiques en milieux hétérogènes Application au Radar Sol, these 2010.

Rafaël PEREZ, Contribution à l’analyse théorique et expérimentale de radargrammes GPR. Performances des antennes : apports d’une configuration multistatique, 2005.

Mehennaoui Naziha, Etude théorique de la propagation des ondes électromagnétiques dans les milieux hétérogènes Application au radar Sol, 2010.

Yanghua Wang, Frequencies of the Ricker wavelet, Geophysics, Vol. 80, No. 2 (March-April 2015); P. A31–A37.
http://dx.doi.org/10.1190/geo2014-0441.1

KarstenM¨uller, Modelling of GPR Wave Propagation and Scattering in Inhomogeneous Media, these Springer 2005.

Harkat, H., Dosse Bennani, S., Ground Penetrating Radar Imaging for Buried Cavities in a Dispersive Medium: Profile Reconstruction Using a Modified Hough Transform Approach and a Time-Frequency Analysis, (2015) International Journal on Communications Antenna and Propagation (IRECAP), 5 (2), pp. 78-92.
http://dx.doi.org/10.15866/irecap.v5i2.4978


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize