
This paper is available online at www.praiseworthyprize.org  
International Journal on Communications Antenna and Propagation (I.Re.C.A.P.), Vol. 12, N. 4 
ISSN 2039 – 5086    August 2022 

Copyright © 2022 The Authors. Published by Praise Worthy Prize S.r.l. 
This article is open access published under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Available online by August 31st, 2022  https://doi.org/10.15866/irecap.v12i4.22089 

237 

Low-Voltage PLC Noise Modelling 
 
 

F. Chelangat, T. J. O. Afullo 
 
 

Abstract – This paper models the PLC impulsive noise using a linear superposition of univariate 
Gaussian distributions where the Bayes’ theorem is used to find the posterior probabilities. The 
Gaussian mixture is formulated using discrete latent variables and modelled using two, three and 
four components in order to evaluate the effect of the number of components (Q). The parameters 
of the Gaussian mixture are then estimated using the maximum likelihood technique and the 
expectation-maximization algorithm. Regression analysis is proposed in order to solve the issue of 
singularity which is often present when the maximum likelihood approach is employed. The model 
is then validated through measurements where the impulsive noise is categorized into low, medium 
and highly impulsive depending on the amplitude of the indoor PLC noise. It is observed that as 
the number of components increases the performance of the Gaussian mixture model also 
increases as depicted by the correlation coefficient and RMSE. The χ2 test indicates that the 
proposed model provides a better fit as the PLC noise amplitude increases. In addition, the shape 
of the impulsive noise PDF becomes more defined with higher Q values. A singularity case is also 
examined where the Gaussian mixture model also provides a good approximation of the measured 
data. Copyright © 2022 The Authors. 
Published by Praise Worthy Prize S.r.l.. This article is open access published under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/). 
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Nomenclature 
L Lagrangian function  
mq Mean of component q 
mqp Updated mean 
N Sample size 
Nq Length of interval q 
Q Mixture component 
R Correlation coefficient 
RMSE Root Mean Square Error 
yg Predicted PDF value 
yo Measured PDF value 

gy  Proposed PDF mean 

oy  Measured PDF mean 
yn Measured data point 
Y0 Initial data point 
Yn Final data point 
znq Latent variable 
χ2 Chi-square Statistic 
γnq Posterior probability 
λ Lagrangian multiplier 
πq Prior probability 
πqp Updated mixture weight 
σq Standard deviation 

2
q  Variance 

σqp Updated variance 
θ Component parameters 

Subscripts 
q Mixture component 
qp Updated value of component q 

I. Introduction 
Powerline communication (PLC), as a mode of data 

transmission, can be used to achieve data rates of up to 
2Gbps [1], and is emerging in the broadband 
communication market as a strong competitor for indoor 
communication [2]. It provides an attractive alternative to 
the other communication systems due to its already 
existing infrastructure. However, like other 
communication systems, it is affected by noise which is a 
superposition of various heterogeneous components, 
particularly narrowband interference, coloured 
background noise and impulsive noise. The impulsive 
noise is further divided into periodic impulsive noise 
synchronous to the mains supply; periodic asynchronous 
to the mains supply; and asynchronous impulsive noise 
[3]-[6]. The most troublesome noise in broadband PLC is 
the impulsive noise, whose power can reach up to 50 dB 
above the thermal noise level [7]. The asynchronous 
impulsive noise, in particular, occurs randomly in bursts 
and has high power, leading to the obliteration of the 
communication signal [5], [6]. Thus, the development of 
a unified statistical model of this noise is a compelling 
task. To solve this problem, an adaptive model for the 
PLC noise needs to be employed. The Machine Learning 
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(ML) approach identifies regularities in data and has 
been employed in other fields such as [8], [9] to estimate 
the bit error rate and is classified into two main 
approaches: supervised and unsupervised learning. In the 
supervised learning approach, the input vectors and their 
corresponding target vectors comprise the training data 
while in the unsupervised learning only the input vectors 
are known and as such, the training data is composed of 
only the input vectors. The application of ML is still a 
new area of interest in PLC [10]. As such, [10] describes 
a general overview of its application including medium 
characterization, physical layer, media access layer, 
statistical modelling and grid diagnostics. A multi-layer 
perceptron model based on the ML method has also been 
employed to enhance the bit error rate performance of the 
PLC channel by significantly lowering the impulsive 
noise in [11]. In this work, unsupervised learning is 
employed such that for any measured PLC noise data, the 
training data set tunes the parameters of the model to suit 
the Probability Density Function (PDF) of the measured 
data. The Gaussian Mixture (GM) model is used to 
analyse the amplitude distribution of the PLC noise 
which is essential in predicting the amount of noise as 
seen by the receiver or the signal-to-noise ratio at the 
receiver. The effect of the number of components that 
constitute the GM on the impulsive noise amplitude 
distribution is examined. From the measurements carried 
out, the indoor impulsive noise is then categorized into 
low, medium and highly impulsive, where in each case a 
comparison is made between the proposed model and 
measurement results. In the proposed model the main 
contributions include:   
1. Assessing the suitability and performance of the GM 

model with different number of components in 
modelling the PDF of the impulsive noise; 

2. Regression analysis is proposed to solve the 
singularity problem present in the estimation of the 
GM model parameters that normally lead to the 
distribution density increasing to infinity; 

3. The performance of the GM model under different 
indoor impulsive noise levels is evaluated; 

4. A simple method of initializing the parameters in the 
EM algorithm is proposed.  

The rest of the paper is organized as follows. In 
section II, an overview of previous studies on PLC noise 
is discussed while section III describes the measurement 
set-up and acquisition of measurement data. Section IV 
presents the GM model, parameter estimation and 
optimization. A brief description of the model calibration 
is covered in section V. The GM model is then applied to 
the measured data and the results are analysed in section 
VI. Finally, the conclusion and future work is presented 
in section VII.  

II. Previous Work 
One of the major advantages of PLC as a mode of data 

transmission is its ubiquitous infrastructure more so, in 
low-voltage environments. However, it comes at a cost as 

it is characterized by heavy traffic in the wiring system 
resulting in time fluctuations of the PLC noise and is thus 
regarded as an unstable system with intermittent periodic 
impulsive noise [12]-[15]. Extensive measurements were 
carried out to investigate the noise contribution of 
different loads on the PLC channel in the 1-500 kHz and 
2-12 MHz frequency bands in [16]. From the results 
obtained, the 1-500 kHz region was observed to have 
higher noise energy levels as compared to the 2-12 MHz 
frequency band. The total PLC noise as seen by the 
receiver is a summation of the background noise, 
narrowband interference and impulsive noise. Therefore, 
it is of primary importance to examine the properties of 
the PLC noise in order to design the most appropriate 
modulation and coding schemes for the PLC receiver 
system. Accordingly, various studies have been done in 
regards to the specific noise characteristics of the PLC 
noise based on the way in which the measurements were 
conducted. Hence, noise modelling can be classified into 
two approaches, namely: the frequency domain and the 
time-domain approach. The time domain approach 
captures the random characteristics of PLC noise at each 
frequency while the frequency-domain approach captures 
the average noise spectrum. Consequently, most PLC 
noise models are based on the time-domain approach. 

The background noise is characterised by a very low 
power spectral density that varies with frequency caused 
by the summation of numerous noise sources with low 
power [3], [5]. In [17], the Rayleigh distribution has been 
employed in modelling the average noise amplitude 
distribution of the background noise at the receiver. This 
model is then extended to the Nakagami distribution 
which is a combination of multiple Rayleigh distributions 
since the background noise results from multiple noise 
sources. The closeness between the Rayleigh and the 
Nakagami distribution is measured by a parameter m 
such that at m=1, the Rayleigh and Nakagami 
distributions are equal [17]. At high frequencies, the 
unshielded electrical wires behave like antennas resulting 
in narrowband interference (NBI) of the transmitted 
signal by the amateur and commercial radio systems 
thereby degrading the performance of the PLC system.  

As such, measurements capturing the NBI were 
performed by [18] in the 1-100 MHz frequency band in 
order to evaluate the NBI levels in the PLC network.  

Moreover, in [19], the NBI model is developed using 
the 3D Markov chain for the low-voltage indoor 
broadband PLC network. The switching of rectifier 
diodes present in many electrical appliances results in 
periodic impulsive noise synchronous with the mains 
frequency while the switched power supplies are the 
main cause of periodic noise that occurs at a repetitive 
rate of between 50 kHz and 200 kHz. The cyclic features 
and the amplitude distributions of the PLC impulsive 
noise are modelled as a cyclostationary Gaussian process 
in [20] where it is expressed as the sum of simple and 
typical noise waveforms. This cyclostationary behaviour 
is also examined by [21] using the long-range 
dependence model where the PLC impulsive noise is 
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confirmed to exhibit self-similarity. Further 
investigations of the cyclostationary nature of the PLC 
noise were performed using the multi-fractal analysis in 
[13] where a more accurate method of obtaining the 
Hurst parameter is discussed. Both studies indicate that 
the PLC impulsive noise exhibits self-similarity [13], 
[21]. At high frequencies, the cyclostationary impulsive 
noise is seen to occur rapidly and at short time intervals 
in [22]. The asynchronous impulsive noise, on the 
contrary, occurs randomly and lasts for a few 
microseconds up to a few milliseconds. It mainly 
originates from switching transients in the PLC network.  

In [23], the complementary the presence of cumulative 
density function method is used to detect impulsive noise 
in PLC. In this approach, the Middleton Class A and 
symmetric-alpha-stable models are used to determine the 
weights. Thereafter, the weighted sum of all the 
differences between the measured and the additive white 
Gaussian noise CCDF is used to determine the presence 
of impulsive noise. The characteristics of the various 
forms of impulsive noise have been investigated and the 
modelling is based on the impulse duration, inter-arrival 
time and the amplitude of the impulses. In [12], the 
likelihood of occurrence of single-impulse noise, 
background noise and bursty impulse noise is 
investigated. It was found that the bursty noise has the 
highest occurrence probability of at least 80% of the 
time, followed by background noise accounting for 
15.57% while single-impulse events accounted for 2.8%.  

The impulsive noise inter-arrival time and duration 
were also studied with the impulsive noise duration 
following the Weibull distribution. In terms of the inter-
arrival time, single-impulse noise events followed the 
Exponential distribution while the bursty noise events 
were found to follow the Poisson distribution. Another 
property of the PLC noise is volatility clustering where 
the periods of low volatility are followed by periods of 
low volatility and the same case applies to periods of 
high volatility [4]. Therefore, the weighted average of the 
past squared residuals with reducing weights that never 
completely diminish is utilised to predict the subsequent 
variances [4]. In [24], the non-parametric kernel density 
technique is used to model the PLC noise amplitude 
distribution whereby the PDF of the measured data is 
estimated directly from the raw data without any prior 
assumptions about the particular structure of the 
underlying distribution since no fixed parameters are 
used to model the data. It is found that the kernel density 
provides a suitable estimate of the measured data.  

Further research has been done in modelling the 
asynchronous impulsive noise, with recent surveys 
categorizing these models into those that have memory 
and those with no memory [6], [25]. The Markov-
Middleton and Markov-Gaussian models belong to the 
model category with memory [6], [25]. The popular 
models with no memory include the Middleton Class A 
and Bernoulli–Gaussian models, which are forms of the 
Gaussian Mixture (GM) model. Symmetric-alpha-stable 
distribution is increasingly becoming popular and has 

recently been employed to model the heavy tails 
exhibited by the PLC impulsive noise due to their heavy-
tailed and skewness characteristic [26], [27]. Even so, the 
symmetric-alpha-stable distribution is described only by 
their characteristic equations as they do not have a useful 
analytical and closed form for its PDF [12]. A 
comparative study is performed on the modelling of 
impulsive noise amplitude in [1], where the Students’ t-
distribution is proposed. In the Middleton Class A model, 
the PLC impulsive noise is determined by summing 
several Gaussian distributions with zero mean and 
different variances which are Poisson distributed [28]. It 
has been applied in [29], to determine the channel 
capacity as well as characterise the performance of the 
broadband PLC through the detection of binary phase 
shift keying symbols. On the other hand, the BG model 
assumes two states- impulsive and impulse-free- which 
can be seen as a two-state representation of the 
Middleton Class A model but with the weights, Bernoulli 
distributed [6], [25]. The GM models are widely used 
due to their simplicity. However, they do not factor in the 
bursty nature of the impulsive noise, as the noise, in this 
case, is assumed to be independent and identically 
distributed (i.i.d.). This shortfall can be addressed using 
multi-carrier modulation, whereby the time domain 
impulse noise is spread by discrete Fourier transform on 
all the sub-carriers in the frequency domain such that the 
form in which the noise occurred either randomly or in 
bursts becomes irrelevant [30]. Mixing of the different 
components of the Gaussian Mixture (GM) has been 
achieved using statistical distributions such as Bernoulli 
and the Poisson distribution which increases the 
complexity of the models. The Middleton Class A model, 
for example, requires the evaluation of the impulsive 
noise to power ratio as well as identifying the number of 
impulsive noise components which is a challenging task.  

There are several studies on the impulsive noise PDF 
focused on modelling the tail of the distribution and is 
assumed that the means of the Gaussian mixtures are 
zero as seen in [31], [32]. Moreover, the number of 
components in the Middleton Class A is also truncated at 
three which is seen to be sufficient enough in modelling 
the PLC impulsive noise [25]. The impulsive noise 
affecting each sub-carrier of the orthogonal frequency 
division multiplexing system which employs binary 
phase-shift keying is modelled using the generalised 
Gaussian model [33]. However, in [34], the generalised 
Gaussian model was extended to model the bi-
dimensional constellations where it was observed to lead 
to significant errors, particularly in multi-modal 
measurement distributions. From previous studies, the 
PLC noise is confirmed to exhibit self-similarity whereby 
if the observed sample is divided into different clusters, 
then each cluster would possess the same statistical 
properties as the whole data set [21]. This self-similarity 
property is applied in the proposed GM model, such that 
the mean and variance of the measured PLC noise for the 
different clusters are applied to the whole sample. As 
such, each component is assumed to be Gaussian 
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distributed and the resulting noise amplitude distribution 
is also Gaussian. The volatility clustering characteristic 
of the PLC noise presented in [4], has also been exploited 
in the proposed model. The Gaussian mixture is a 
heteroscedastic model since the mean and variance are 
functions of the measured data. Consequently, the mean 
and variance of each cluster vary depending on whether 
the cluster captures a period of high volatility or a period 
of low volatility. Although the amplitude distribution of 
the PLC noise in [24], is derived solely from the 
measured data with no prior assumptions as regards the 
characteristic nature of the measured data, the 
effectiveness of the model is based on the determination 
of the optimum bandwidth. Accordingly, several 
iterations are performed to obtain the optimal model, on 
which depending on the errors obtained from the 
goodness of fit test, the bandwidth is adjusted. The 
proposed GM model provides a simple straightforward 
way of determining the amplitude distribution of the PLC 
noise where the unsupervised learning approach is 
employed to find clusters that exhibit comparable 
properties within the measured noise data. In [35], the 
GM model is applied in modelling the Bit Error Rate 
(BER) of the PLC channel. The BER is formulated from 
the impulsive noise PDF where the parameters of the 
model are acquired through soft learning of the observed 
samples. The parameters of the GM are estimated 
through the maximum likelihood estimate and optimised 
using the expectation-maximization algorithm. The 
optimum number of components of the GM model is 
obtained from the Mutual Information theory framework 
and the model is seen to provide a fair estimate for the 
measured data.  

In this work, further considerations are made on the 
PDF modelling of impulsive noise using the GM model 
proposed in [35]. Different number of components are 
used to formulate the Gaussian mixture and the 
performance of each GM mixture model is investigated. 
In addition, the effect of singularity where the EM 
algorithm does not converge on the GM model PDF is 
examined. A simple procedure of initialising the 
parameters of the GM model is also proposed. The PLC 
impulsive noise is assumed to be a linear superposition of 
the univariate Gaussian distributions. The data is divided 
into subsets for which the mean and the variance of each 
subset are determined, and then applied to the whole data 
set. Parameters of the GM are then derived from the 
maximum likelihood estimation technique where the 
Bayesian theorem is used to determine the posterior 
probabilities which are referred to as responsibilities.  

These are then used to compute the ’new’ parameters 
of the GM model namely: the mixing weights, means, 
and variance. In order to find the optimum parameters, 
the Expectation Maximization (EM) algorithm is 
employed. Thereafter, regression analysis is performed to 
determine the accuracy of the proposed model. It also 
solves the issue of singularities in the likelihood function 
where a Gaussian component collapses to a single data 
point. 

III. Measurement Set-Up 
Due to the complex nature of the PLC noise, the 

models developed, both parametric and non-parametric 
are mostly based on measurements. Therefore, to provide 
plausible descriptions of the acquired data sample, a 
rigorous measurement campaign of PLC noise need to be 
conducted. In this work, comprehensive noise 
measurement was carried out using a higher resolution 
Rigol DS2202A Digital Storage Oscilloscope (DSO) 
connected via a coupling circuit to the powerline 
network. The measurement setup is shown in Fig. 1. 

The oscilloscope is capable of capturing 14 million 
samples whereby the sampling rate is set at 1 Giga 
samples/s, thus exploiting the maximum storage capacity 
of the oscilloscope as the resulting window length is  
0.014 seconds. The measured data is then transferred to 
the computer for processing and storage. A differential 
mode coupler is used to isolate the high voltage mains 
supply ensuring the safety of the equipment as well as 
filtering out the low-frequency signals. The coupler 
comprises a 1:1 broadband transformer, series capacitors, 
transient voltage suppressors and Zener diodes. The 
series capacitance together with the leakage inductance 
of the transformer create a series resonant coupling 
circuit. Investigations have been done regarding the 
effect of the coupling circuits on the PLC impulsive 
noise [36], where the results indicate that as the PLC 
noise passes through the coupling circuit, it excites points 
of resonance in the coupler. Consequently, this results in 
resonance which introduces ringing to the impulse noise.  

The ringing effect then distorts the impulse duration, 
inter-arrival time and amplitude of the impulse signal 
[36]. Further investigations on the effect of the coupler 
on impulsive noise are discussed in [36]. In this work, 
the effect of the coupling circuit is not considered as the 
focus is on the PLC noise in general as seen by the 
receiver. In order to examine the contribution of different 
loads present in typical PLC environments to the PLC 
noise, measurements were carried out in different 
locations in the 1-30 MHz frequency band. Four 
locations are considered in this study namely Computer 
laboratory (Computer Lab), Post-graduate office, 
Apartment and Machines Laboratory (Machines Lab).  

In the Computer Lab, the electric loads connected 
include an air-conditioner, sixty computers and 
fluorescent lights.  

 

 
 

Fig. 1. Measurement Set-up 
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The measurements were performed between 2:00 pm 
to 5:00 pm during which all the stations were occupied as 
the students performed their practicals. The electrical 
devices connected to the Post-graduate powerline 
network include laptop and desktop computers, 
fluorescent lights, mobile phones, air-conditioning units, 
an electric kettle and a heavy-duty printer (Konica 
Minolta C364 model) that serves all the post-graduate 
students in the Northern and Southern Electrical 
buildings at the University of KwaZulu-Natal. The 
measurement results were obtained during the day when 
the office is preoccupied between 8:00 am and 5:00 pm.  

As for the Apartment, the loads connected to the 
powerline network include light dimmers, washing 
machine, television set, fluorescent lights, electric kettle, 
vacuum cleaner, electric cooker, microwave oven, juice 
blender, iron box and security lights. In this location, 
measurement was conducted between 6:00 pm to 9:00 
pm whereby most of the electric appliances in the house 
are switched on and active.  

The Machines Lab measurement campaign was 
carried out between 2:00 pm and 5:00 pm, during which 
the students undertook their practicals. The Machines 
Lab contains 9 workstations in which each of the stations 
comprises an ac motor, dc generator, adjustable speed 
drive, variac with an in-built rectifier and a variable 
resistor of up to 450 Ω. 

 Other loads in the Machines Lab include fluorescent 
lights and air-conditioners. All of the scenarios are 
located at the University of KwaZulu-Natal except for 
the Apartment. Sample measurement noise results from 
the different locations are shown in Figs. 2.  

The PLC noise, as observed from the sample noise 
measurements in Figs. 2, is difficult to characterize and 
model through pure mathematical derivation. Thus, the 
parameters for the statistical models are derived from the 
distribution into certain PDFs that fully describe the 
overall noise characteristics. 

IV. Proposed Model 
In the proposed model, impulsive noise is assumed to 

be i.i.d. random variables whose PDF is generated from 
the weighted sum of a linear superposition of Gaussian 
distributions (components) with the mixing probabilities 
summing up to one. Thus, at any given time constant, the 
noise is a random variable. The discrete-latent variable 
model is used to formulate the GM whereby for each 
observed data point yn where n=1,2,…,N, there is a 
corresponding latent variable znq, that indicates whether 
the qth mixture component generated that data point for 
q=1,2,…,Q [37]. Thus, the data point yn can only be 
generated by the qth mixture component given by [37]:  

 

    1 ,n nq n q qp y z N y m  ∣ ∣  (1) 
 
where N(yn|mq,σq) is the qth Gaussian density defined as 
[38], [39]:  

 

 
 

 2

1 2
2

1, exp
22

n q
n q q

q
q

y m
N y m


  

 
∣  (2) 

 
and mq, σq are the mean and standard deviation. Since the 
latent variable znq is unknown, a prior distribution is 
placed such that: 
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Ancestral sampling technique is then used to generate 

the value of yn by computing the joint distribution of the 
latent variable p(znq=1), and the conditional distribution 
p(yn|znq=1) to obtain [37]:  

 

    ,n q n q qp y N y m  ∣  (5) 
 
The sum of the joint distribution over all possible 

states of znq results in the PDF of the Gaussian mixture 
for data point yn such that at any given time constant, the 
noise is a random variable whose PDF is defined as:  
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where θ={mq, σq, πq:q=1, 2,…, Q} is a collection of all 
parameters of the model. The corresponding posterior 
probability (responsibility) of znq given yn can be 
determined using Bayes’ theorem as [38]: 
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(7)

 
Equation (7), gives the probability that the qth mixture 

component generated the nth data point. Thus, πq denotes 
the prior probability and defines the mixing weights in 
the GM model while γnq denotes the posterior probability 
once yn has been observed. 
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(a) Computer Lab 

 

 
(b) Post-Graduate Office 

 

 
(c) Apartment 

 

 
(d) Machines Lab 

 
Figs. 2. Measured Noise Samples 

IV.1. Parameter Estimation 

In order to estimate the parameters of the GM, the 
maximum likelihood technique is employed where these 
parameters are derived from the measured impulsive 
noise data. Thus, if N is the total number of observations 
for a given data set Y=y1, y2,…, yn, the likelihood 
function of the Gaussian mixture is given as: 
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where p(yn|θ) refers to the Gaussian density of every 
individual likelihood. Equation (8) can be simplified by 
taking the log of the likelihood function to obtain:  
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The derivative of equation (9) with respect to mq is 

obtained as [37]:  
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p(yn|θ) in Equation (10), is given as:  
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It follows that only the qth mixture component depends 

on mq and therefore:  
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Applying Chain rule to (12a):  
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Substituting (11) and (12b) to (10):  
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where γnq has been defined in equation (7). The updated 
mean mqp is then determined by setting the derivative in 
(13) to zero to obtain:  
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where Nq is the total number of points assigned to the qth 
mixture component and is given by: 
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N

q nq
n

N


   (15) 

 
Similarly, the derivatives of (9) with respect to 2

q  
and πq are obtained as [37], [38]:  
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The corresponding updated variance σqp is then given 

by: 
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In order to compute the partial derivative of the 

mixture weight πq, the constraint that all mixture weights 
need to sum up to 1, given in (4), is accounted for by 
using the Lagrangian multiplier. The corresponding 
Lagrangian is given as [35], [37], [38]:  
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The partial derivatives with respect to πq and Lagrange 

multiplier λ are then obtained as:  
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Setting the partial derivatives of equations (20) and 

(21) to zero and solving for πq the updated mixture 
weight πqp is obtained as:  

 

 
q

qp
N
N
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The EM algorithm aims at maximizing the likelihood 

function with respect to the means, variances and mixing 
coefficients of the components. It achieves this by 
iteratively refining the initial parameters alternating 
between updating the cluster assignments and parameter 
estimates. With each iteration, the mean of each 
component Gaussian distribution moves towards the 
mean of the data in the cluster. For the proposed model, 
the EM algorithm consists of the following steps [35], 
[38]:  
1. Initialize mq, σq and πq, then evaluate the initial value 

of the log-likelihood; 
2. Expectation step (E-step): Compute the 

responsibilities, using the current parameters: 
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3. Maximization step (M-step): Re-evaluate the 

parameters using the current responsibilities to obtain 
the updated mean, variance and mixing weight 
represented by mqp, σqp and πqp respectively: 
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4. Evaluate the log-likelihood: 
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5. Check for convergence of either the log-likelihood or 

the parameters. If the convergence criterion is not 
satisfied, return to step 2.  

IV.2. Parameter Initialization 

The EM algorithm discussed in the previous section 
consists of the E-step and the M-step. In the E-step, the 
posterior probabilities are evaluated using the initial 
values of the parameters. Thereafter, the posterior 
probabilities are used to re-estimate the updated (new) 
means, variances and mixing weights. Although the 
maximum likelihood solution suffers from identifiability, 
whereby a Q-component mixture will have a total of Q-
equivalent solutions for a particular maximum likelihood 
solution that corresponds to the Q! methods in which the 
Q-sets of parameters can be assigned to the Q-
components, this issue is irrelevant if the purpose is to 
find a good density model since each of the equivalent 
solutions is as good as the others [38]. The parameters of 
the proposed model are derived from the independent and 
identically distributed random variables of the measured 
time-domain sequence of noise samples in the low-
voltage indoor environment. As such, at each time instant 
t, there is an impulse noise variable yn, with a specific 
amplitude. The time domain amplitude distribution of the 
measured data is shown in Fig. 3 and the corresponding 
sample sequence series with two intervals is illustrated in 
Fig. 4. As such, the observation window is divided into Q 
intervals of equal length such that:  

 

 

n o
q

Y Y
N

Q

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where Nq is the length of the qth interval and represents 
the total number of samples in the qth interval, YN=1400  
and Yo=0 from Fig. 4. Accordingly, each interval 
provides the parameters of the components of the 
Gaussian mixture.  
 

 
 

Fig. 3. Noise Amplitude Distribution 

 
 

Fig. 4.  Sample Sequence Series 
 

Therefore, the probability that the average noise level 
in the observation window is in the kth cluster is then 
given by: 

 

 
q

q
N
N

   (30) 

 
In the proposed model, initialization of these 

parameters consists of the following steps:   
1. Divide the data into Q clusters; 
2. Compute the ratio of the number of points in each 

cluster to the total number of samples. This gives the 
initial mixing weights; 

3. Determine the mean and variance of each cluster. 
This gives the means and variances for the individual 
components of the Gaussian mixture; 

4. Compute the Gaussian distributions for the whole 
data set using the means and variances found in step 
3. 

IV.3. Selection of Optimum Parameters 

From the EM algorithm, the optimum parameters are 
found by checking the convergence of either the log-
likelihood function or parameters. However, in some 
cases, the algorithm may not converge due to 
singularities of the likelihood function which may occur 
when the maximum likelihood method is applied to 
estimate the parameters. This occurs when a data point 
has a value that is exactly equal to the mean of one of the 
component distributions. Thus, from (6), the nth data 
point will contribute to a term in the likelihood function 
of the form:  
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Hence, as σq→0, the likelihood function tends to 

infinity and the same case applies to the log-likelihood 
function. A Gaussian mixture has a minimum of two 
components. As such, if one of the component 
distributions collapses to a particular data point, the other 
component with a finite variance assigns a finite 
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probability to all the data points thereby contributing an 
ever-increasing additive value to the log-likelihood. In 
order to solve this problem, regression analysis is 
performed to determine the iteration whose parameters 
best describe the measured data.  

V. Model Calibration 
The Pearson’s parametric correlation (R) test is 

performed in this work to measure the degree of 
dependency between the GM model and the measured 
data. The Root Mean Square Error (RMSE) test and the 
Chi-Square statistic (χ2) are also used to analyse the 
goodness-of-fit of the GM model based on their 
residuals. Equations (33), (34) and (35) define R, RMSE 
and χ2 respectively as [12], [24]:  
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where yo is the measured value, yg is the proposed model 
value, oy  and gy  are the means of the measured and the 
proposed model value while N is the measurement 
sample size. The objective of the Chi-Square test in this 
work is to evaluate the deviation between the expected 
model results from measurement. Thus, the null 
hypothesis states that the measured data follows the GM 
distribution while the alternative hypothesis states that 
the measured data does not follow the proposed GM 
distribution. The significance level is set at 5% and hence 
a p-value <0.05 indicates that the null hypothesis is 
rejected and therefore conclude that the measured data 
does not follow the proposed GM distribution.  

Otherwise, if the p-value >0.05 the null hypothesis is 
accepted and conclude that the measured data is 
consistent with the proposed model distribution results. 

VI. Results and Discussion 
The impulse noise amplitude, width and inter-arrival 

time are the major properties of impulsive noise. The 
proposed model seeks to extend the knowledge of the 
PLC noise where the impulsive noise amplitude 
characteristic is investigated. The measured data is 
categorized into three categories depending on the peak-

to-peak(pp) amplitude voltage as low, medium and 
highly impulsive. The low, medium and highly impulsive 
noise ranges are 0≤y≤0.25Vpp, 0.25<y≤2Vpp and y>2Vpp 
respectively. For each category, the PDF is modelled 
using a GM composed of two components (q=2), three 
components (q=3) and four components (q=4). The 
performance of each GM is analysed using the 
correlation coefficient, RMSE and the χ2 statistic for each 
measured data.  In Fig. 5, it is observed that as the number of Gaussian 
mixture components increases, the peak of the curve 
increases as well. The peak of the q=3 model is also seen 
to be close to the peak of the measured data. In addition, 
from Table I the q=4 Gaussian mixture shows a good 
correlation with the measured data where the correlation 
coefficient values range between 0.9857 to 0.9897 with 
the highest correlation observed for the four component 
GM model. Thus, there is a strong correlation between 
the predicted and the measured data as all the values are 
above 0.98. It can also be seen from Table I that the four-
component GM model performs better than the other two 
models with an RMSE of  0.1716 as compared to 0.1842 
and 0.1821 for the two and three-component GM models 
in measurement 1. From Fig.6, it is observed that at q=4 
and q=3 the shape of the predicted density follows 
closely the measured data. For q=2, there is no notch 
between the two peaks as is the case with the three and 
four-component GM models. From Table I, measurement 
2, the two-component model has a lower correlation as 
compared to the other models with a value of 0.9761. In 
terms of accuracy, the RMSE values range from 0.1653 
to 0.2463 where the q=4 model has the least RMSE 
value. All the models, in this case, have a high 
correlation to the measured data. In both cases, the three 
component GM model correlation coefficient and the 
RMSE values fall in between q=2 and q=4.  

 
TABLE I 

LOW IMPULSIVE 
Computer Lab 

 Measurement 1 Measurement 2 
Model q=2 q=3 q=4 q=2 q=3 q=4 

R 0.9857 0.9860 0.9897 0.9761 0.9801 0.9893 
RMSE 0.1842 0.1821 0.1716 0.2463 0.2446 0.1653 

 

 
 

Fig. 5. Low Impulsive: Measurement 1 
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Fig. 6.  Low Impulsive: Measurement 2 
 
From Figs. 5 and 6, the measured PDF for the 

Computer Lab has no outliers caused by high amplitude 
impulse noise. This is because the computers in this 
location use switched mode power supplies that have 
been confirmed to produce impulsive noise of low 
amplitude as confirmed in [17]. As such, any increased 
amplitude in the Computer Lab is caused by fluorescent 
lights that have been confirmed to produce higher 
impulse noise levels [17], [40]. For the medium 
impulsive noise category, the GM models at the q=2, q=3 
and q=4 overlap as shown in Fig. 7 and Fig. 8. In this 
case, the likelihood function for the different Q-
component GM models are seen to result in the same 
density distribution. Moreover, the correlation 
coefficients are the same for q=2 where R=0.9718 and 
q=24 having R=0.9726 for the two measurement data as 
summarized in Table II. The correlation coefficient 
varies slightly at q=3. This can be attributed to the 
occurrence of impulsive noise of similar amplitude levels 
as the measurement is taken in the same location.  

However, the RMSE values vary with the RMSE 
values for measurement 1 ranging between 0.1875 and 
0.1849 while for measurement 2 the values are between 
0.1935 and 0.1908. The correlation coefficients and the 
RMSE values for the medium impulsive noise are shown 
in Table II. 

 

 
 

Fig. 7. Medium Impulsive: Measurement 1 

 
 

Fig. 8.  Medium Impulsive: Measurement 2 
 

TABLE II 
MEDIUM IMPULSIVE 
Post-Graduate Office 

 Measurement 1 Measurement 2 
Model q=2 q=3 q=4 q=2 q=3 q=4 

R 0.9718 0.9725 0.9726 0.9718 0.9723 0.9726 
RMSE 0.1875 0.1852 0.1849 0.1935 0.1918 0.1908 

Apartment 

 Measurement 1  
Model q=2 q=3 q=4    

R 0.9877 0.9828 0.9871    
RMSE 0.2875 0.3400 0.2950    
 
Fig. 9 presents the density distribution of the 

impulsive noise measured in an apartment. In this case, 
there is the presence of singularity where one of the 
components collapsed. Thus, with each iteration, the GM 
density value increased. The parameters were selected 
using regression analysis and the iteration with the best 
maximum likelihood estimates was used to model the 
PDF. It is observed that the two-component GM model 
gives the best estimate with a correlation coefficient of 
0.9877 followed by q=4 component model with 
R=0.9871 while the q=3 model has the lowest correlation 
coefficient of R=0.9828. Nonetheless, all the R-values 
are high indicating a strong correlation between the 
measured data and the GM model densities. From Fig. 7 
and 8 which are results from the Post-graduate office, the 
measured amplitude distributions are observed to have 
spikes at the peaks. This is due to impulsive noise caused 
by fluorescent lights, electric kettles, heavy-duty printers 
and air conditioning units among other appliances which 
have been confirmed in [2], [17] to contain silicon-
controlled rectifiers, rectifier diodes and other power 
electronic switching devices that produce high levels of 
impulsive noise. Similar observations can be made in 
Figs. 9, 10 and 11 which are measurement results from 
an Apartment and Machines Lab respectively. The results 
for the highly impulsive category are shown in Fig. 10 
and Fig. 11. In this case, the PDF has several peaks with 
the highest peaks occurring at zero. Considering Fig. 10, 
the shape of the PDF is more defined in the q=4 model 
followed by q=3. At q=2, there are two peaks where the 
second peak does not occur at the mean of the second 
component distribution.  
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Fig. 9. Medium Impulsive: Apartment 
 

 
 

Fig. 10. Highly Impulsive: Measurement 1 
 

 
 

Fig. 11. Highly Impulsive: Measurement 2 
 
In this case, the R-values increase as the number of 

components in the Gaussian mixture increases as shown 
in Table III where the highest correlation coefficient is at 
q=4. The RMSE values, on the contrary, decrease with 
an increase in the number of components where the least 
RMSE value for measurement 2 is 0.0355. In this 
category, a higher number of components results in a 
better fit. This is due to the multi-modal characteristic 
observed. As Q increases, the shape of the model density 
distribution becomes more defined and closer to the 

measured density. The χ2 statistical test results for the 
lowly, medium and highly impulsive categories are 
summarised in Table IV. It is observed that the χ2 values 
for the Computer Lab are less than the critical values for 
both Measurements 1 and 2. As the number of 
components constituting the GM model increases, the χ2 
value decreases. Hence, the q=4 GM model provides a 
better fit compared to the q=3 and q=2 models. In 
addition, the p-values are greater than 0.05 and therefore 
conclude that the measured data follows the proposed 
model. The Post-Graduate office data χ2 values vary 
between 7.522-7.9027 and are also seen to be less than 
the critical value of 36.4150 meaning that the null 
hypothesis is accepted. Accordingly, the p-values are 
also greater than 0.05 and can therefore conclude that the 
measured data is consistent with the GM distribution. It 
can also be seen that as q increases a better fit is 
obtained. Although the R and RMSE values of the 
apartment data indicated a strong correlation for all the 
three models, the χ2 values are closer to the critical value 
where the χ2 values for the q=2 and q=4 model are less 
than the critical value and hence the null hypothesis is 
accepted.  

 
TABLE III 

HIGHLY IMPULSIVE 
Machines Lab 

 Measurement 1 Measurement 2 
Model q=2 q=3 q=4 q=2 q=3 q=4 

R 0.9160 0.9282 0.9334 0.9531 0.9571 0.9586 
RMSE 0.0427 0.0397 0.0382 0.0378 0.0362 0.0355 

 
TABLE IV 

χ2 TEST 
Computer Lab 

 Model χ2 P value df Critical 
Value 

Measurement 1 
q=2 9.4927 0.6603 

12 21.0260 q=3 7.1429 0.848 
q=4 6.9873 0.8584 

Measurement 2 
q=2 10.9882 0.3588 

10 18.3070 q=3 10.5123 0.3967 
q=4 5.5325 0.8528 

Post-Graduate Office 

 Model χ2 P value df Critical 
Value 

Measurement 1 
q=2 7.9027 0.9991 

24 36.4150 q=3 7.6701 0.9998 
q=4 7.5227 0.9998 

Measurement 2 
q=2 6.6179 0.9996 

24 36.4150 q=3 7.8061 0.9992 
q=4 7.7434 0.9993 

Apartment 

 Model χ2 P value df Critical 
Value 

Measurement 1 
q=2 33.8929 0.2851 

30 43.7729 q=3 44.6812 0.0413 
q=4 30.0886 0.4611 

Machines Lab 

 Model χ2 P value df Critical 
Value 

Measurement 1 
q=2 5.6529 0.9952 

17 27.5871 q=3 4.9463 0.9979 
q=4 5.2042 0.9971 

Measurement 2 
q=2 5.2649 0.9969 

17 27.5871 q=3 4.7111 0.9984 
q=4 5.0569 0.9976 
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However, for q=3 the χ2 value is greater than the 
critical value of 43.7729. Consequently, the p-value is 
0.0413 which is less than 0.05 in which case the null 
hypothesis is rejected. The significant difference is due to 
the collapse of one of the component distributions 
resulting in a sharp rise in the predicted values. At the 
peak, for example, the proposed model gives a value of 
114.75 while the measured PDF value is 66.65. At q=3, 
the proposed model provides a better fit for the 
measurements carried out in the Machines Lab. This is 
then followed by the q=4 model. In all three models, the 
χ2 values are below the critical values and therefore the 
null hypothesis is true. It can also be observed that as the 
impulse noise amplitude increases from the low-medium-
highly impulsive, the GM model provides a better fit 
where the average χ2 value in the low impulsive category 
is 8.4427. Assuming that there is no singularity case, the 
medium impulsive χ2 value is 7.5438 and 5.1394 for the 
highly impulsive noise category. 

VII.   Conclusion 
In this paper, the amplitude of the impulsive noise has 

been modelled using a Gaussian mixture where the 
parameters employed are obtained from measurement 
data. The impulsive noise has a very unpredictable 
behaviour in terms of amplitude, burstiness and inter-
arrival times. Thus, it is very difficult to have fixed 
parameters modelling the PDF for different data. The 
parameters employed in the proposed model are done 
automatically depending on the data in question.  

Therefore, it provides a simplified way of modelling 
the PDF noise. The GM models are then verified through 
measurements using the correlation coefficient, RMSE 
and the χ2 statistic. It can be seen that for the different 
noise categories, the accuracy of the predicted PDF 
increases with an increase in the number of components 
used to formulate the Gaussian mixture from the 
correlation coefficient and the RMSE analysis.   

However, there is very little difference in the 
performance of each of the GM at q=2, q=3 and q=4.  

Thus, any of the models model can be used to model 
the PDF of the measured data. All the χ2 values are less 
than the respective critical values indicating that the 
proposed GM model distribution is consistent with 
measured data except for the q=3 component distribution 
of the measured Apartment results. This shows the effect 
of singularity on the GM. In order to improve the 
performance of the model, an alternative parameter 
estimation method may be employed in future work.  

Depending on the parameter under consideration, for 
example, the shape of the PDF, more components are 
required in the formulation of the GM model. In low and 
medium impulsive noise categories, the peaks are not as 
spread out as those of the high impulsive category. From 
the measurement results under consideration, it can be 
seen that the proposed GM model effectively describes 
the amplitude distribution at different noise levels. Thus, 
the proposed Gaussian mixture offers a fair estimation of 

the impulsive noise amplitude distribution and can be 
used to evaluate the performance of the PLC channel 
based on the PLC modulation schemes. 
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