Influence of Symbioses Culture between Microorganisms/Yeast Strains on Cellulose Synthesis

Plácia Barreto Prata Góis(1*), Gabriel Molina de Olyveira(2), *, Ligia Maria Manzine Costa(3), Camila Figueiredo Chianca(4), Igor Ives Santos Fraga(5), Pierre Basmaji(6), Carlos Vicente Cordoba(7), Lauro Xavier-Filho(8)

(1) Laboratory of Natural Products and Biotechnology, ITP, University Tiradentes, Aracaju-SE, Brazil., Brazil
(2) Department of Nanoscience and Advanced Materials, Federal University of ABC (UFABC) Santo André, São Paulo, Brazil., Brazil
(3) Department of Nanoscience and Advanced Materials, Federal University of ABC (UFABC) Santo André, São Paulo, Brazil., Brazil
(4) Laboratory of Natural Products and Biotechnology, ITP, University Tiradentes, Aracaju-SE, Brazil., Brazil
(5) Laboratory of Natural Products and Biotechnology, ITP, University Tiradentes, Aracaju-SE, Brazil., Brazil
(6) Innovatec’s – Biotechnology Research and Development, São Carlos-SP, Brazil., Brazil
(7) College Biology, Complutense University of Madrid, Spain., Spain
(8) Laboratory of Natural Products and Biotechnology, ITP, University Tiradentes, Aracaju-SE, Brazil., Brazil
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


Bacterial cellulose (BC), which is produced by some strains of the bacterial genera Acetobacter, represents a potential alternative to plant-derived cellulose. Due to its high water-holding capacity, high crystallinity, high tensile strength and fine web-like network structure, which means that it can be formed into any size or shape, BC is being used as a promising nanofiber biomaterial. The bacterial cellulose fermentation process is achieved by using the sugar as carbohydrate source. Different carbon sources can be used for the cellulose synthesis, namely glucose, fructose and cane sugar. Results of this process would be nanobiocellulose biomass.In order to improve cellulose production, determine the purity and some structural features of the cellulose from this strain; it was isolated and identified the microorganisms from kombucha and their ability to cellulose biosynthesis. It was found that the microorganisms Gluconacetobacter intermedius is the best for cellulose production with higher cellulose levels (14.63g/L) in static culture conditions. These results indicating the G. intermedius strain from Kombucha has industrial and commercial potential for cellulose production
Copyright © 2012 Praise Worthy Prize - All rights reserved.


Applied Biotechnology; Bacterial Cellulose Production; Fermentation Process; Gluconacetobacter Intermediu; Kombucha

Full Text:



P.A. Richmond. Occurrence and Functions of Native Cellulose..Biosynthesis and Biodegradation of Cellulose.(Marcel Dekker, 1991, pp. 5–23).

S. Yamanaka, K.Watanabe, N. Kitamura, M.Iguchi, S. Mitsuhashi; Y.Nishi. and M. Uryu. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Material Science, 24, 1989, pp.3141-3145.

M.Iguchi, S.Yamanaka, and A. Budhiono. Review Bacterial cellulose-a masterpiece of nature’s arts. Journal of Material Science, 35,(2), 2000, pp.261-270.

P.Basmaji.; G.M.Olyveira; L.M.M.Costa; L.X. Filho. Bacterial Cellulose Towards Functional Green Composites Materials. Journal of Bionanoscience , 5, 2011,pp.167–172.

W.J. Orts, J.Shey, S.H.Imam, G.M. Glenn, M.E.Guttman, and J.F. Revol . Application of cellulose microfibrils in polymer nanocomposites. Journal of Polymers and the Environment, 13 (4), 2005, pp.301-306.

W.K. Czaja; D.J.Young; M.Kawecki . The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules, 8,.1,2007, pp1-12.

P.Ross; R.Mayer; M.Benziman. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55 (1), 1991,pp.35-58.

Y.Z.Wan, L.Hong, S.R. Jia, Y.Huang, Y.Zhu, Y.L.Wang, and H.J.Jiang. Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Composites Science and Technology, 66, 2006, pp.1825-1832.

S.J. Eichhorn, A. Dufresne, M.Aranguren, N.E.Marcovich, J.R.Capadona, S.J.Rowan, C.Weder , W.Thielemans, M.Roman, S.Renneckar, W.Gindle, S.Veigel, J.Keckes, H.Yano, K.Abe, M.Nogi, A.N.Nakagaito, A.Mangalam, J.Simonsen, A.S.Benight, A.Bismarck; L.A.Berglund, and T.Peijs. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Material Science, 45, 2010, pp.1-33.

S.Bielecki; A.Krystynowicz; M.Turkiewicz; H.Kalinowska. Bacterial Cellulose. Polysaccharides and Polyamides in the Food Industry. (Wiley- VCH Verlag, Weinheim, Germany, 2005, pp. 31–85).

L.M.M.Costa; G.M.Olyveira; P. Basmaji; L.X.Filho. Bacterial Cellulose Towards Functional Medical Materials. J. Biomater. Tissue Eng;. 2, 2012,pp.185-196.

M. Matsuoka , T. Tsuchida , K.Matsushita , K.Adachio , F.Yoshinga. A synthetic medium for bacterial cellulose productionby Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem;60:1996;pp.575–579.

P.Basmaji ; G.M.Olyveira; L.M.M.Costa. Nanoskin for Medical application. Proceeding of Nanotechnology: Bio Sensors, Instruments, Medical, Environment and Energy, vol.3, pp.267-270, Boston – USA, June 13 -15, 2011.

P.Basmaji; G.M. Olyveira; L.M.M.Costa; L.X.Filho. Bacterial Nanocellulose for medicine regenerative. J.Nanotech. Eng. Med.; 2, 3,2011, pp.34001-34009.

S.J.Sokollek , C.Hertel , W.P.Hammes. Cultivation and Preservation of vinegar bacteria. J Biotechnol ; 60;1998, pp.195-296.

T.M. Guimarães, D.G.Moriel, I.P.Machado, C.M.T.F.Picheth, T.M.B. Bonfim. Isolation and Characterization of Saccharomyces cerevisae strains of winery interest. Braz J Pharm Sci; 42(1), 2006; pp.119-126.

R.R.Navarro and K. Komagata. Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. J Gen Appl Microbiol; 45; 1999; pp.7-15.

T.T.Kadere , T.Miyamoto , R.K.Oniang’o , P.M.Kutima , S.M.Njoroge. Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi). Afric J Biotechnol ; 7(16); 2008; pp.2963-2971.

D.H. Bergey; J.G.Holt. Bergey’s Manual of Determinative Bacteriology.(Lippincott Williams & Wilkins, 1994).

D.K.S.Marques. Caracterização genética do Pirarucu Arapaima gigas (Cuvier) (Teleostei, Osteoglossidae) da bacia Tocantins-Araguaia, Estado de Mato Grosso. Ph.D. Dissertation, São Carlos-SP, 2003.

L.A.Nicholson, C.J.Morrow, L.A.Corner; A.L.M Hodgson. Phylogenetic relationship of Fusobacterium necrophorum A, AB, and B biotypes based upon 16S rRNA gene sequence analysis. Int J System Bacteriol; 44(2), 1994,pp.315-319.

G.S.Sandhu , B.C.Kline , L.Stockman ,G.D. Roberts. Molecular Probes for Diagnosis of Fungal Infections. J Clin Microbiol ; 33(11), 1995,pp.2913-2919.

J.D.Thompson; D.G.Higgins; T.J.Gibson; W.Clustal. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res; 22(22); 1994,pp.4673-4680.

V.T.Nguyen,, B.Flanagan,, M.J.Gidley, G.A.Dykes. Characterization of Cellulose Production by a Gluconacetobacter xylinus strain from Kombucha. Current Microbiol; 57, 2008, pp.449-453.

N.B.Barros; I.S.Scarminio; R.E.Bruns(1995). Planejamento e optimização dos experimentos. (Unicamp-Campinas, 1995).

D.O.S.Recouvreux; C.A.Carminatti,A.K. Pitlovanciv, C.R.Rambo, L.M.Porto, R.V.Antônio. Cellulose Biosynthesis by the Beta-Proteobacterium, Chromobacterium violaceum. Curr Microbiol; 57, 2008, pp.469-476.

C.Bertocchi, D.Delneri; S.Signore, Z.Weng, C.V.Bruschi. Characterization of microbial cellulose from a high-producing mutagenized Acetobacter pasteurianus strain. Bioch et Biophysica Acta; 1336; 1997; pp.211-217.

K.C.Cheng; J.M. Catchmark; A.Demirci. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Engineering ; 3(12); 2009; pp1-10.

Y.Chao, Y.Sugano, M. Shoda. Bacterial Cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor. Appl Microbiol Biotechnol; 55; 2001; pp.673-679.

A.Krystynowicz, W.Czaja, A.Wiktorowska-Jezierska, M.Gonçalves-Miskiewicz, M.Turkiewicz, S.Bielecki. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol; 29; 2002; pp.189-195.

S.Y. Kim, J.N.Kim, Y.J. Wee, D.H.Park, H.W.Ryu. Production of Bacterial Cellulose by Gluconacetobacter sp. RKY5 Isolated From Persimmon Vinegar. Appl Biochem Biotechnol; 121;124; 2006; pp.705-715.

C.P. Kurtzman, C.J.Robnett, E.Basehoar-Powers. Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from ‘Kombucha tea’. FEMS Yeast Res ; 1; 2001; pp.133-138.

D.Dutta and R.Gachhui. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Inter J Syst Evolutionary Microbiol ; 57 ;2007; pp.353-357.

A.L.Teoh, G.Heard, J.Cox. Yeast ecology of Kombucha fermentation. Int J Food Microbiol ; 95; 2004;pp.119-126.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2020 Praise Worthy Prize