Non-Newtonian Effect of Blood in Physiologically Realistic Pulsatile Flow


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In this paper the non-Newtonian effects of blood on flow features are studied in stenosis arteries. Two axisymmetric stenosis models were constructed with area reduction of 50% and 75%. A measured human common carotid artery blood flow waveform was used as the upstream flow condition which has a mean Reynolds number of 300. The assumption of laminar flow is considered for modeling. Numerical simulations in which grids are adapted corresponding to velocity profiles are used to solve the equations. The corresponding numerical predictions for Newtonian fluids were compared with the experimental flow patterns. The results indicate a satisfactory agreement in both quality and quantity. The same model is then used for blood as a non-Newtonian fluid. Two rheological models, power law and carreau fluid, are studied for comparing the wall shear stress and velocity profiles in the post stenotic region. The results indicate that other than the differences between Newtonian and non-Newtonian models, various non-Newtonian models display different flow patterns. Therefore to realize the pulsatile flow behavior in stenosis arteries, the actual rheological model should be considered.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Full Text:

PDF


References


C. Costopoul os, T.V.L., M. Bennett, Ageing and atherosclerosis: Mechanisms and therapeutic options. Biomechanical Pharmacology 75 (2008) 1251-1261.
http://dx.doi.org/10.1016/j.bcp.2007.10.006

J. A. Berliner, M.N., A. M. Fogelman, J. S. Frank, L. L. Demer, P. A. Edwards, A. D. Watson, A. J. Lusis, , Atherosclerosis: Basic Mechanisms. Circulation, 91 (1995), 2488-2496.
http://dx.doi.org/10.1161/01.cir.91.9.2488

P. Greenspan, H.Y., F. Mao, R. L. Gutman, Cholesterol deposition in macrophages: foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein Joumal of Lipid Research 38 (1997).

S. Patel, D.S.C., S. Bao, Atherosclerosis—Underlying inflammatory mechanisms and clinical implications. The International Journal of Biochemistry & Cell Biology 40 (2008) 576–580.
http://dx.doi.org/10.1016/j.biocel.2007.11.017

A. D. Augst, B.A., S. A. G. McG. Thom, X. Y. Xu, A. D. Hughes, Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am J Physiol Heart Circ Physiol 293 (2007) 1031-1037.
http://dx.doi.org/10.1152/ajpheart.00989.2006

J. Bovd, J.M.B., Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Physics of Fluids 19 (2007)
http://dx.doi.org/10.1063/1.2772250

M. Esmaeili, A.J., S. E. Marashi The modeling of pulsatile blood flow as Cross-Williamson and Carreau fluids in an artery with a partial occlusion in Secend UKSIM European on Symposium on Computer Modeling and Simulation. 2008.
http://dx.doi.org/10.1109/ems.2008.109

B. M. Johnston, P.R.J., Non-Newtonian blood ow in human right coronary arteries: Steady state simulations. Journal of Biomechanics (2004).
http://dx.doi.org/10.1016/j.jbiomech.2003.09.016

B. M. Johnston, P.R.J., S. Corney, D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: Transient simulations. Journal of Biomechanics 39 (2006) 1116 – 1128.
http://dx.doi.org/10.1016/j.jbiomech.2005.01.034

F.J.H. Gijsen, F.N.v.d.V., J.D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. Journal of Biomechanics 32 (1999) 601-608.
http://dx.doi.org/10.1016/s0021-9290(99)00015-9

G. Lorenzini, E.C., CFD analysis of pulsatile blood flow in an atherosclerotic human arter y with eccentric plaques. Journal of Biomechanics 41 (2008) 1862 – 1870.
http://dx.doi.org/10.1016/j.jbiomech.2008.04.009

H. Turkeri, S.P., M. S. Celebi, Non-Newtonian blood flow simulation in a realistic artery domain, in V European Conference on Computational Fluid Dynamics. 2010: Portugal.

J. Boyd, J.M.B., S. Green, Application of the Lattice Boltzmann Method to non-Newtonian flow in a carotid artery model, in Australian Institute of Physics 17th National Congress, Brisbane, 3-8 December (2006).

J. Chen, X.Y.L., W. Wang, Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. Journal of Biomechanics 39 (2006) 1983 – 199.
http://dx.doi.org/10.1016/j.jbiomech.2005.06.012

J. Chen, X.Y.L., Numerical investigation of the non-Newtoni an pulsatile blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics 39 (2006) 818 – 832.
http://dx.doi.org/10.1016/j.jbiomech.2005.02.003

J. Prakash, A.O., A study of pulsatile blood flow modeled as a power law fluid in a constricted tube. international communications in heat and mass transfer 34 (2007) 762-768.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.04.001

Li Xin-Yu, W.G.-b., LI Ding, computer simulation of non-newtonin flow and mass transport through cornary arterial stenosis. Applied Mathematics and Mechanics 22 (2001)
http://dx.doi.org/10.1007/bf02438307

Q.Long, X.Y.X., K.V.Ramnarine, P.Hoskins, Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. Journal of Biomechanics 34 (2001) 1229–1242.
http://dx.doi.org/10.1016/s0021-9290(01)00100-2

S. Amornsamankul, B.W., Y. H. Wu, Y. Lenbury, Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries. International Journal of Biological and Life Sciences 1 (2005).

S.U. Siddiqui, N.K.V., Shailesh Mishra, R.S. Gupta, Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis. Applied Mathematics and Computation 210 (2009) 1-10.
http://dx.doi.org/10.1016/j.amc.2007.05.070

F.P.P.Tan, G.S., S. Bashford, N. B. Wood, S. Thom, A. Hughes, X.Y. Xu, Analysis of Flow Disturbance in a Stenosed Carotid Arter y Bifurcation Using Two-Equation Transitional and Turbulence Models. Journal of Biomechanical Engineeringc130 (2008)
http://dx.doi.org/10.1115/1.2978992

M. D. GRIFFITH, T.L., M. C. THOMPSON, K. HOURIGAN, Pulsatile flow in stenotic geometries: flow behaviour and stability. J. Fluid Mech. 622 (2009) 291-320.
http://dx.doi.org/10.1017/s0022112008005338

P. K. Mandal, An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis. International Journal of Non-Linear Mechanics 40 (2005) 151–164.
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.007

S. J. S H E R W I N, H.M.B., Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533 (2005) 297-327.
http://dx.doi.org/10.1017/s0022112005004271

J. STUART, M.W.K., Blood rheology. J Clin Pathol, 33 (1980), 417-429.
http://dx.doi.org/10.1136/jcp.33.5.417

Y. Fan, W.J., Y. Zou, J. Li, J. Chen, X. Deng, Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation. Acta Mech Sin 25 (2009) 249–255.
http://dx.doi.org/10.1007/s10409-009-0227-9

F. Ghalichi, X.D., M. King, A. De Champlain, R. Guidoin, Y. Douville, Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 35 (1998) 281–294.
http://dx.doi.org/10.1016/s0006-355x(99)80011-0

E. H. Cuthill, J.M., Reducing Bandwidth of Sparse Symmetric Matrices, In Proc. ACM 24th National Conf. 1969: New York.
http://dx.doi.org/10.1145/800195.805928

N. E. Gibbs, W.G.P., Jr., P. K. Stockmeyer, An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal. 1976.
http://dx.doi.org/10.1137/0713023

I. Marshall, S.Z., P. Papathanasopoulou, P. Hoskins, X Y.Xu, MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. Journal of Biomechanics 37 (2004) 679–687.
http://dx.doi.org/10.1016/j.jbiomech.2003.09.032

AA. Saad, D.G., Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J. Biomech., 16, (1983), 505-516.
http://dx.doi.org/10.1016/0021-9290(83)90065-9


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize