Modeling Periodic and Aperiodic Behavior of Acetylcholine Hydrolysis

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


A two compartments model with the acetylcholinesterase activity localized in one compartment only has been used to investigate the periodic and aperiodic behavior of acetylcholine hydrolysis process. The investigation based on a well established kinetic scheme and kinetic data. The model has accounts for the effects of hydrogen ions concentrations on the kinetics and its role in creating membrane potential assuming no other charged ions are exist. Both autonomous and non-autonomous cases are investigated considering the two common mechanisms of applying acetylcholine in practical physiological situations (constant and quantal). The investigation uncovered a wealth of static and dynamic bifurcations of the system including multiplicity of steady states, isola, periodic and aperiodic behavior. The periodic and aperiodic behavior characterized by different patterns of spikes. Two spikes per cycle in membrane potential is the dominating pattern all over most of the considered range. Changing the feeding mechanism of acetylcholine from constant steady feeding to constant quantal feeding causes dramatic changes in the dynamic behavior of the system. This is an element of establishing a complete descriptive model for the neurocycle acetylcholinestrase/choline acetyltransferas biosystem
Copyright © 2012 Praise Worthy Prize - All rights reserved.


Acetylcholine Hydrolysis; Bifurcation; Periodic and Aperiodic; Chemical Synapse; Membrane Potential; Ph Effect; Neurocycle

Full Text:



J. A. Dani, M. De Biasi., Cellular mechanism of nicotine addiction, Pharmacol Biochem. Behav., 70(2001)439-446.

F. P. Bymaster, D. L Mckinzie, C. C. Felder, J. Wess, Use of m1-m5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system, Neuro Chem. Res., 28(2003)437-442.

S. S. E. H. Elnashaie, G. Ibrahim, F. A. Teymour, Chaotic behavior of an acetylcholniesterase enzyme system, Chaos Solitons Fract., 5, (1995)933-954.

G. Ibrahim, F. A. Teymour, S. S. E. H. Elnashaie, Periodic and chaotic behavior of substrate-inhibited enzymatic reaction with hydrogen ions production, Appl. Biochem. Biotech., 55 (1995)175-192.

G. Ibrahim, S. S. E. H. Elnashaie, Hyperchaos in acetylcholineesterase enzyme system, Chaos solitons and fract., 8 (1997) 1977-2007.

S. S. E. H. Elnashaie, M. A. ElRifai, G. Ibrahim, The effect of hydrogen ion production on the steady state multiplicity of substrate inhibited enzymatic reactions, I-Steady state considerations, Appl. Biochem. And Biotech., 8 (1983)275-288.

S. S. E. H. Elnashaie, M.A. ElRifai, G. Ibrahim, The effect of hydrogen ion production on the steady state multiplicity of substrate inhibited enzymatic reactions, II- Transient behavior, App. Biochem. And Biotech.,8 (1983)467-479.

S. S. E. H. Elnashaie, G. Ibrahim, S. S. ElShishini, The effect of hydrogen ion production on the steady state multiplicity of substrate inhibited enzymatic reactions, III- Asymmetrical steady states in enzyme membranes, App. Biochem. And Biotech., 9 (1984)455-474.

A. Mahecha-Botero, P. Garhyan, S. S. E. H Elnashaie, Bifurcation and chaotic behavior of a coupled acetylcholinesterase/choline acetyltransferase diffusion-reaction enzyme system, Chem. Eng. Sci., 59 (2004)581-597.

P. Garhyan, A. Mahecha-Botero, S. S. E. H. Elnashaie, Complex bifurcation/chaotic behavior of acetylcholinesterase and choline acetyltransferase enzymes system, Applied Math. Model., 30 (2006)824-853.

P. Masson, P. Legrand, C. F. Barfels, M. T. Froment, L. M Scheopfer, O. Lockridge, Role of asparatate 70 and tryptophane 82 in binding of succinylthiocholine to human butyrylcholinesterase, Biochemistry, 36 (1997)2266-2277.

S. Tara, A. H. Elcock, P. D. Kirchhoff, J. M. Briggs, Z. Radic, P. Taylor, J. A. McCammon, Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamic simulation including diffusion in the active site gorge, Biopolymers, 46 (1998)465-474.

W. D. Mallender, T. Szegletes, T. L. Rosenberry, Acetylthiocholine binds to Asp74 at the peripheral site of human acetylcholinesterase as first step in the catalytic pathway, Biochemistry, 39 (2000)7753-7763.

I. B. Wilson, E. Cabib, Acetylcholinesterase: enthalpies and entropies of activation, J. Am. Chem. Soc., 78 (1956)202-207.

T. Szegletes, W. D. Mallender, T. L. Roseberry, Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands, Biochemistry, 37 (1998)4206-4216.

L. Brochier, Y. Pontie, M. Willson, S. Estrada-Mondaca, J. Czaplicki, A. Klaebe, D. Fournier, Involvement of deacylation in activation of substrate hydrolysis by drosophila acetylcholinesterase, J. Biol. Chem., 276 (2001)18298-18302.

R. M. Krupka, K. J. Laidler, Molecular mechanisms for hydrolytic enzyme action, II inhibition of acetylcholinesterase by excess substrate, J. Am. Chem. Soc. 83 (1961)1448-1454.

Ming An Shi, A. Lougarre, C. Alies, I. Fremaux, Z. H. Tang, J. Stojan, D. Fournier, Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance, BMC Evolutionary Biology 4:5 (2004),

J. Stojan, L. Brochier, C. Alies, J. P. Colletier, D. Fourrier, Inhibition of drosophila melanogaster acetylcholinesterase by high concentrations of substrate, Eur. J. of Biochem., 271 (2004)1364-1371.

R. R. Llinas, The squid giant synapse, a model for chemical transmission. Oxford university press, Oxford (1999).

M. C. Paez, R. Fayad, Diffusion of the neurotransmitter cannot govern the rise time of miniature end-plate, Revista Colombiana de Fisica, 31 (1999)163.

C. A. Guyton, J. E. Hall, Textbook of medical physiology, tenth ed., W.B. Saunders Company, Amsterdam (2000).

S. Tucek, Acetylcholine synthesis in neurons, Chapman & Hall, London (1978).

H. Soreq, H. Zakut, Human cholineterases and anticholinesterases, Academic press, San Diego (1993).

P. Kasa, Z. Rakonczay, K. Gulya, The cholinergic system in Alzheimer’s disease, Progress in neurobiology, 52 (1997)511-535.

E. J. Doedel, Champneys A. R., Fairgrieve T. F., Kuznetsov Y. A., Sandstede B., Wang X. J., AUTO97: Continuation and bifurcation software for ordinary differential equations, Dept. of Computer Science, Concordia University, Montreal, Canada (1997).

G. Testylier, P. Courmelon, E. Multon, D. Clarencon, J. Viret, “In vivo” determination of striatal acetylcholinesterase activity by microspectrophotometery. Physiological modulations of enzyme by various effectors, In: Massoulie et al. (Eds), Conference proceedings series cholinesterase. American chemical society, Washington, DC (1991)215.

W. F. Boron, E. L. Boulpaep, Medical physiology, WB Saunders Eds (Sep. 2002) ISBN:0721632564.

Z. Radic, P. Taylor, Interaction kinetics of reversible inhibitors and substrates with acetylcholinesterase and its fasciculin 2 complex, J. Biol. Chem. 276 (7)(2001)4622-4633.

D. M. Michaelson, I. Angel, Determination of delta pH in cholinergic synaptic vesicles: its effect on storage and release of acetylcholine, Life sci. 27 (1980)39-44.

H. H. Fuldner, H. Stadler, 31P-NMR analysis of synaptic vesicles, Status of ATP and internal pH, Eur. J. of Biochem., 121 (1982)519-524.

R. Ahdu-Hacohen, D. Duridanova, H. Meiri, R. Rahamimoff, Hydrogen ions control synaptic vesicle ion channel activity in Torpedo electromotor neurons, J. Physiology, 556-2 (2004)347-352.

S. M. Parsons, Transport mechanisms in acetylcholine and monoamine storage, FASEB J., 14 (2000)2423-2434.

S. Heven, Xuhang Li, G. P. Michael, Energization of plant cell membranes by H+ -pumping ATPases: Regulation and biosynthesis, The plant cell, 11 (1999)677-689.

A. L. Koch, The pH in the neighborhood of membranes generating a protomotive force, J. theor. Biol., 120 (1986)73-84.

R. Friboulet, A. David, D. Tomas, Excitability memory and oscillation in acetylcholinesterase membrane, J. membrane sci. 8 (1981)33-39.

I. Wessler, E. Roth, S. Schwarze, W. Weikel, F. Bittinger, C. J. Kirkpatrick, H. Kilbindger, Release of non-neural acetylcholine from the human placenta: difference to neural acetylcholine, Naunyn-Schmiedeberg’s Arch. Pharmacol., 364 (2001)205-211.

P. Fatt, B. Katz, Spontaneous sub threshold activity at motor nerve endings, J. Physiol. (lond.), 117(1952)109-128.

M. R. Bennett, The origin of Gaussian distributions of synaptic potentials, Progr. Neurobiol., 46(1995)331-350.

Y. Dunant, M. Israel, Neurotransmitter release at rapid synapses, Biochimie, 82(2000)289-302.

M. C. Rosales-Hernandez, J. E. Mendieta-Wejebe, J. Correa-Basurto, J. I. Vazques-Alcantara, E. Terres-Rojas, J. Trujillo-Ferrara, Catalytic activity of acetylcholinesterase immobilized on mesoporous molecular sieves, International journal of biological macromolecules, 40 (2007)444-448.

F. H. White, D. A. Thompson, K. Cohari, Ultra structural morphometry of gap junctions during differentiation of stratified Squamous Epithelium, J. Cell Sci., 69 (1984)67-85.

W. Van Der Kloot, J. Molgo, R. Cameron, C. Colasante, Vesicle size and transmitter release at the frog neuromuscular junction when quantal acetylcholine content is increased or decreased, J. of Physiol., 541 (2002)385-393.

L. P. Sartchenko, D. A. Rusakov, The optimal height of synaptic cleft, PNAS, 104 (6) (2007)1823-1828.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2024 Praise Worthy Prize