Multi Transition States for SN2 Reaction in Intramolecular Processes


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


The DFT calculation results for ring-closing reactions of eight different ω–bromoalkanecarboxylate anions, 1-8, five different 4-bromobutylamines, 9-13 and four β–aminoethyl chlorides, 14-17 reveal that the intramolecular substitution nucleophilic attack of the nucleophile (-O- or –NH2) on the electrophilic center (-(CH2)-Br or - (CH2)-Cl) involves multi - transition states.  Further, the results establish that the activation energy (∆∆G‡) for intramolecular cyclization processes calculated from the higher transition state is strongly correlated with the experimentally intramolecular cyclization rate (log kintra), whereas the difference in the energies of the highest and the lowest energy transition states is found to correlate strongly with the experimental or MM2 calculated strain energy of the reactant or the strain energy difference between the cycle formed and the reactant (Es Exp).  The latter result is the first to predict strain energy based on energy barrier
Copyright © 2010 Praise Worthy Prize - All rights reserved.

Full Text:

PDF


References


For a review in this topic, see A. W. Czarink, In Mechanistic Principles of Enzyme Activity: (Eds.; J. F. Liebman, A. Greenberg) VCH publishers, New York, NY, 1988. T. C. Bruice, S. J. Benkovic, “Bioorganic Mechanisms” Vols. I and II; Benjamin: Reading, MA 1966. W. P. Jencks, “Catalysis in Chemistry and Enzymology”; McGraw; New York 1969. M. L. Bender, “Mechanism of Homogeneous Catalysis from Protons to Proteins”; Wiley Interscience: New York 1971. D. L. Nelson, M. M. Cox, “Lehninger Principles of Biochemistry” Worth Publishers: New York 2003. A. Fersht, “Structure and Mechanism in Protein Science: A guide to Enzyme Catalysis and Protein Folding, W. H. Freeman and Company, New York 1999. R. Pascal, Eur. J. Org. Chem. (2003), 1813. R. Pascal, Bioorganic Chemistry 31 (2003), 485. G. F. Sweigers, "Mechanical Catalysis”, John Wiley & Sons, (Hoboken, NJ), 2008. C. Walsh, “Enzymatic Reaction Mechanism” San Francisco: Freeman, 1979, pp 978. M. I. Page “In Enzyme Mechanisms. Ed. M. I. Page, A. Williams. London. R. Soc. Chem., 1987, pp 1. R. B. Silverman, “The Organic Chemistry of Enzyme-Catalyzed Reactions. San Diego: Academic, 2002, pp 717. R. Pascal, Eur. J. Org. Chem. (2003), 1813. D. A. Kraut, K. S. Carroll, D. Herschlag, Annu. Rev. Biochem. 72 (2003), 517. A. Radzicka, R. Wolfenden, J. Am. Chem. Soc. 118 (1996), 6105. M. J. Snider, R. Wolfenden, J. Am. Chem. Soc. 122 (2000), 11507. M. I. Page, W. P. Jencks, Proc. Natl. Acad. Sci. U.S.A. 68 (1971), 1678. M. I. Page, W. P. Jencks, Gazz. Chim. Ital.117 (1987), 455. M. I. Page, Chem. Soc. Rev. 2 (1973), 295. M. I. Page, Angew. Chem., Int. Ed. Engl. 16 (1977), 449.

F. M. Menger, M. Ladika, J. Org. Chem. 35 (1990), 3006. F. M. Menger, M. Ladika, J. Am. Chem. Soc. 110 (1988), 6794. F. M. Menger, Acc. Chem. Res. 18 (1985), 128. F. M. Menger, J. F. Chow, H. Kaiserman, P. C.Vasquez, J. Am. Chem. Soc. 105 (1983), 4996. F. M. Menger, Tetrahedron 39 (1983), 1013. F. M. Menger, J. Grosssman, D. C. Liotta, J. Org.Chem. 48 (1983), 905. F. M. Menger, A. L. Galloway, D. G. Musaev, Chem. Commun. (2003), 2370. F. M. Menger, Pure Appl. Chem. 77 (2005), 1873 and references therein.

T. C. Bruice, F. L. Lightstone, Acc. Chem. Res. 32 (1999), 127. F. L. Lightstone, T. C. Bruice, J. Am. Chem. Soc. 119 (1997), 9103. F. L Lightstone, T. C. Bruice, J. Am. Chem. Soc. 118 (1996), 2595. F. L Lightstone, T. C. Bruice, J. Am. Chem. Soc. 116 (1994), 10789. T. C. Bruice, W. C. Bradbury, J. Am. Chem. Soc. 90 (1968), 3803. T. C. Bruice, W. C. Bradbury, J. Am. Chem. Soc. 87 (1965), 4846. T. C. Bruice, U. K. Pandit, J. Am. Chem. Soc. 82 (1960) 5858. T. C. Bruice, U. K. Pandit, Proc. Natl. Acad. Sci. U. S. A. 46 (1960) 402.

A. Dafforn, D. E. Jr. Koshland, Proc. Natl. Acad. Sci. U. S. A. 68 (1971), 2463; A. Dafforn, D. E. Jr. Koshland, Bioorg. Chem. 1 (1971), 129.

S. Milstein, L. A. Cohen, J. Am.Chem. Soc. 92 (1970), 4377. S. Milstein, L. A. Cohen, Proc. Natl. Acad. Sci. U. S. A. 67 (1970), 1143. S. Milstein, L. A. Cohen, J. Am. Chem. Soc. 94 (1972), 9158.

A. Greenberg, J. F. Liebman, “Strained Organic Molecules”; Academic Press; New York, 1978. J. F. Liebman, A. Greenberg, Chem. Rev. 78 (1976), 311.

R. F. Brown, N. M. Van Gulick, J. Org. Chem. 21 (1956), 1046.

R. Karaman, Tet. Lett. 49 (2008), 5998. R. Karaman, Bioorg. Chem. 37(2009), 11. R. Karaman, Tet. Lett. 50 (2009), 452. R. Karaman, Res. Lett. Org. Chem. doi: 10.1155/2009/240253. R. Karaman, Bioorg. Chem. 37 (2009), 106. R. Karaman, J. Mol. Struct. (Theochem) 910 (2009), 27. R. Karaman, Tet. Lett. 50 (2009), 6083. R. Karaman, J. Mol. Struct. (Theochem) 939 (2010), 69. R. Karaman, Tet. Lett. 50 (2009) 7304. R. Karaman, J. Mol. Struct. (Theochem) 940 (2010), 70. R. Karaman, Tet. Lett. 51 (2010), 2130.

L. Ruzicka, Chem. Ind. (London) 54 (1935), 2.

For reviews on early studies see : G. Illuminati, L. Mandolini, Acc. Chem. Res. 14 (1981), 95. L. Mandolini, Adv. Phys. Org. Chem. 22 (1986), 1.

C. Galli, G. Illuminati, L. Mandolini, J. Am. Chem. Soc. 95 (1973), 8374; C. Galli, G. Illuminati, L. Mandolini, P. Tamborra, J. Am. Chem. Soc. 99 (1977), 2591; L. Mandolini, J. Am. Chem. Soc. 100 (1978), 550.

M. A. Casadei, C. Galli, L. Mandolini, J. Am. Chem. Soc. 106 (1984), 1051.

G. Illuminati, L. Mandolini, B. Masci, J. Am. Chem. Soc. 97 (1975), 960. G. Illuminati, L. Mandolini, B. Masci, J. Am. Chem. Soc. 99 (1977), 6308. L. Mandolini, B. Masci, S. Roelens, J. Org. Chem. 42 (1977), 3733. A. Dalla Cort, L. Mandolini, B. Masci, J. Org. Chem. 45 (1980), 3923. A. Dalla Cort, G. Illuminati, L. Mandolini, B. Masci, J. Chem. Soc. Perkin Trans. 2 (1980), 1774.

C. Galli, P. Gargano, L. Mandolini, Gazz. Chim. Ital. 116 (1986), 653.

C. Galli, G. Illuminati, L. Mandolini, J. Org. Chem. 45 (1980), 311.

C. Galli, L. Mandolini, Eur. J. Org. Chem. (2000), 3117.

http://www.gaussian.com.

U. Burker, N. L. Allinger, Molecular Mechanics; American Chemical Society; Washington, DC, 1982.

C. J. Casewit, K. S. Colwell, A. K. Rappe', J. Am. Chem. Soc. 114 (1992), 10024. C. J. Casewit, K. S. Colwell, A. K. Rappe', J. Am. Chem. Soc. 114 (1992), 10035. C. J. Casewit, K. S. Colwell, A. K. Rappe', J. Am. Chem. Soc. 114 (1992), 10046.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 107 (1985), 3902.

J. N. Murrell, K. J. Laidler, Trans Faraday Soc. 64 (1968), 371.

K. Fukui, Acc. Chem. Res. 14 (1981), 363. K. Muller, Angew. Chem. Int. Ed. Engl. 19 (1980), 1.

M. T. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 107 (1997), 3032. B. Mennucci, J. Tomasi, J. Chem. Phys. 106 (1997), 5151; B. Mennucci, E. Cancès, J. Tomasi, J. Phys. Chem. B 101 (1997), 10506; J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct.(Theochem) 464 (1999), 211.

F. Jensen, “Introduction to Computational Chemistry” John Wiley & Sons 2002, pp 1-422.

J. Hine, Adv. Phys. Org. Chem. 15 (1977), 1.

A. P. Bento, F. M. Bickelhaupt, J. Org. Chem. 72 (2007) , 2201. A. P. Bento, F. M. Bickelhaupt, J. Org. Chem. 73 (2008), 7290. G. Th. de Jong, F. M. Bickelhaupt, ChemPhysChem 8 (2007), 1170.

D. H. Ess, K. N. Houk, J. Am. Chem. Soc. 130 (2008), 10187; D. H. Ess, K. N. Houk, J. Am. Chem. Soc. 129 (2008), 10646; L. Xu, C. E. Doubleday, K. N. Houk, Angew. Chem. Int. Ed. 48 (2009), 2746.

Some of the Es Exp values were calculated by different methods, for further information see: K. H. Wiberg, R. F. Waldron, J. Am. Chem. Soc. 113 (1991), 7697; J. M. Brown, A. D. Conn, G. Pilcher, M. L. P. Leitao and Y. Meng-Yan Chem. Comun.(1989), 1817. H. J. Rodriguez, J.-C. Chang, T. F. Thomas, J. Am. Chem. Soc. 98 (1976), 2027. H. J. Rodriguez, I. H. Williams, J. Chem Soc. Perkin Trans. 2 (1997), 953.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize