Enzymatic Transformation of Palm Oil in Biodiesel Using Porcine Pancreatic Lipase Immobilized on Hybrid Matrix

Grazielle S. Silva(1*), Patrícia C. M. da Rós(2), Julio C. Santos(3), Victor H. Perez(4), Heizir F. de Castro(5)

(1) Engineering School of Lorena-University of São Paulo. PO Box 116, Lorena, Zip code: 12602-810, SP-Brazil, Brazil
(2) Engineering School of Lorena-University of São Paulo. PO Box 116, Lorena, Zip code: 12602-810, SP-Brazil., Brazil
(3) Engineering School of Lorena-University of São Paulo. PO Box 116, Lorena, Zip code: 12602-810, SP-Brazil, Brazil
(4) State University of the North Fluminense Darcy Ribeiro/ Center of Sciences and Agropecuary Technologies/ Food Technology Department. Av. Alberto Lamego nº 2000, Pq. Califórnia. Campos dos Goytacazes. Zip code: 28013–602. RJ-Brazil, Brazil
(5) Engineering School of Lorena-University of São Paulo. PO Box 116, Lorena, Zip code: 12602-810, SP-Brazil., Brazil
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Porcine pancreatic lipase (PPL) immobilized on a hybrid matrix (polysiloxane polyvinyl alcohol, POS-PVA) was used to catalyze the transesterification of the palm oil with different short chain alcohols (ethanol, propanol and butanol) in solvent free system. The commercial biocatalyst, Lipozyme IM20, was used for comparison. The reaction system oil/ butanol showed to be the most suitable substrate to perform the reaction with both enzymatic preparations, attaining similar yields higher than 75%. Lower yields (< 55%) were achieved for the other reaction systems, and the immobilized pancreatic lipase showed better performance than Lipozyme IM20 in all cases. Based on the potential application of PPL immobilized on POS-PVA, further experiments were performed to determine the oil/butanol molar ratio under which the formation of butyl esters and productivity are maximized
Copyright © 2012 Praise Worthy Prize - All rights reserved.

Keywords


Immobilized Lipase; Biodiesel; Palm Oil; Transesterification

Full Text:

PDF


References


Vasudevan P.T., Briggs, M. Biodiesel production – Current state of the art and challenges, Journal of Industrial Microbiology and Biotechnology, 35 (2008) 421-430.

Brazilian Ministery of Science and Technology (MCT). Portaria MCT No. 702, de 30 de outubro de 2002. Site: http://www.mct.gov.br/index.php/ content/view/14600.html. Accessed in September 15, 2009. Brazil.

Meher L.C., Sagar D. V., Naik, S. N., Technical aspects of biodiesel production by transesterification - A review, Renewable and Sustainable Energy Review, 10 (2006) 248-268.

Pinto A.C., Guarieiro L.L.N.; Rezende, M.J.C.; Ribeiro, N.M.; Torres, E.A.; Lopes, W.A.; Pereira, P.A.deP.; De Andrade, J.B., Biodiesel: An overview, Journal of the Brazilian Chemical Society, 16 (2005) 1313-1330.

Maher, K. D.; Bressler, D.C., Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals, Bioresource Technology 98 (2007) 2351–2368.

Knothe, G; Van Gerpen, J.; Krahl, J., Biodiesel Handbook, AOCS Press, 2006.

Soon, T.K., An overview of the Asean oleochemical market, Malasyan Oil Science and Technology, 10 (2001) 59-71.

Casson, A. Oil-palm, soy beans and critical habitat loss, A review. (2003) FAO – FAOSTAT: Online database. http://apps.fao.org. Accessed in September 15, 2009.

Helwani, Z.; Othman, M.R.; Aziz, N.; Fernando, W.J.N.; Kim, J., Technologies for production of biodiesel focusing on green catalytic techniques: A review, Fuel Processing Technology (2009), In Press. doi:10.1016/j.fuproc.2009.07.016

Bajaj, A.; Lohan, P.; Jha, P.N.; Rajesh, M., Biodiesel production through lipase catalyzed, Journal of Molecular Catalysis B: Enzymatic, (2009), In Press. doi:10.1016/ j.molcatb. 2009. 09. 018

Paula, A.V.; Urioste, D.; Santos, J. C.; De Castro, H.F., Porcine pancreatic lipase immobilized on polysiloxane–polyvinyl alcohol hybrid matrix: Catalytic properties and feasibility to mediate synthesis of surfactants and biodiesel, Journal of Chemical Technology and Biotechnology, 82 (2007) 281–288.

Santos, J.C.; Paula, A.V.; Rocha, C.G.F.; Nunes, G.F.M.; De Castro, H.F., Morphological and mechanical properties of hybrid matrices of polysiloxane–polyvinyl alcohol prepared by sol–gel technique and their potential for immobilizing enzyme, Journal of Non-Crystalline Solids 354 (2008) 4823–4826.

Soares, C.M.F.; De Castro, H.F.; Moraes, F.F.; Zanin, G.M., Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Applied Biochemistry and Biotechnology, 77-79 (1999) 745-757.

Moreira, A.B.R.; Perez, V.H.; Zanin, G.M.; De Castro, H.F., Biodiesel synthesis by enzymatic transesterification of palm oil with ethanol using lipases from several sources immobilized on Silica–PVA composite, Energy & Fuels 21(2007) 3689–3694.

Urioste, D.; Castro, M.B.A.; Biaggio, F.C.; De Castro, H.F., Síntese de padrões cromatográficos e estabelecimento de método para dosagem da composição de ésteres de ácidos graxos presentes no biodiesel a partir do óleo de babaçu, Química Nova, 31 (2008) 407-412.

Laane, C.; Boeren, S.; Vos, K.; Veeger, C., Rules for the optimization of biocatalysis in organic solvents, Biotechnology & Bioengineering, 30 (1987) 81-87.Pleiss, J.; Fischer, M.; Schmid, R. D., Anatomy of lipase binding sites: the scissile fatty acid binding site, Chemistry and Physics of Lipids, 93 (1998) 67-68.

Noureddini, H.; Gao, X.; Philkana, R.S., Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil, Bioresource Technology, 96 (2005) 769-777.

Bezbradica, D.; Mijin, D.; Siler-Marinkovic, S.; Knezevic, Z., The Candida rugosa lipase catalyzed synthesis of amyl isobutyrate in organic solvent and solvent-free system: A kinetic study, Journal of Molecular Catalysis B: Enzymatic, 38 (2006) 11–16.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize