Challenges in Fuel Ethanol Production

Carlos A. Cardona(1*), Julián A. Quintero(2), Óscar J. Sánchez(3)

(1) Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Colombia
(2) Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Colombia
(3) Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Colombia
(*) Corresponding author

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


Fuel ethanol production still represents many technological challenges, due mainly to the implicit complexity and costs of feedstock and other inputs. However, this process has been implemented at different scales, including the commercial one, through tax exemptions or subsides, which seek to lower production costs. In this article main feedstocks for ethanol production are discussed considering their production, advantages and drawbacks. The importance of conditioning and pretreatment as decisive process steps for conversion of feedstocks into ethanol is highlighted. Main methods for conditioning and pretreatmen are presented as well as the enzymatic procedures for starch hydrolysis. The need of pretreatment of lignocellulosic biomass is analyzed considering the complexity of this type of raw material. Several methods for pretreatment and detoxification of biomass are briefly described. The difficulties related to the enzymatic hydrolysis of cellulose are analyzed considering the enzyme complexes employed and the presence of solid particles in the reaction mixture. Main fermentation and concentration technologies for ethanol production are discussed. Ethanol dehydration technologies, including the most perspective, are disclosed as well. Finally, some environmental aspects of ethanol production are highlighted
Copyright © 2014 Praise Worthy Prize - All rights reserved.


Fuel Ethanol; Lignocellulosic Biomass; Technologies; Feedstock; Pretreatment

Full Text:



N. Kosaric, J. Velikonja, Liquid and gaseous fuels from biotechnology: challenge and opportunities. FEMS Microbiol Rev 16 (1995) 111-142.

J. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo, C. A. Cardona, Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case, Energy 33 (2008) 385-399.

Y. Lin, S. Tanaka, Ethanol fermentation from biomass resources: current state and prospects, Appl Microbiol Biot 69 (2006) 627-642.

S. R. Bull, Renewable alternative fuels: alcohol production from lignocellulosic biomass, Renew Energ 5 (1994) 799-806.

C., Wilkie, K. J. Riedesel, J. M. Owens, Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks, Biomass Bioenerg 19 (2000) 63-102.

P. Ghosh, T. K. Ghose, Bioethanol in India: Recent past and emerging future, Adv Biochem Eng Biot 85 (2003) 1–27.

M. Decloux, A. Bories, R. Lewandowski, C. Fargues, A. Mersad, M. L. Lameloise, F. Bonnet, B. Dherbecourt, L. Nieto, Interest of electrodialysis to reduce potassium level in vinasses. Preliminary experiments, Desalination 146 (2002) 393-398.

R. Messias de Bragança, P. Fowler, Industrial Markets for Starch (The BioComposites Centre, University of Wales, 2004).

S. Wang,, K. Sosulski, F. Sosulski, M. Ingledew, Effect of sequential abrasion on starch composition of five cereals for ethanol fermentation, Food Res Int 30 (1997) 603-609.

X. Zhan, D. Wang, M. R. Tuinstra, S. Bean, P. A. Seib, X. S. Sun, Ethanol and lactic acid production as affected by sorghum genotype and location, Ind Crop Prod 18 (2003) 245-255.

R. Hosein, W. A. Mellowes, Malt hydrolysis of sweet-potatoes and eddoes for ethanol production, Biol Waste 29 (1989) 263-270.

P. Nigam, D. Singh, Enzyme and microbial systems involved in starch processing, Enzyme Microb Tech 17 (1995) 770-778.

E. Poitrat, The potential of liquid biofuels in France, Renewable Energy 16 (1999) 1084–1089.

J. T. Mullins, C. NeSmith, Acceleration of the rate of ethanol fermentation by addition of nitrogen in high tannin grain sorghum, Biotechnol Bioeng 30 (1987) 1073-1076.

O. J. Sánchez, C. A. Cardona, Producción de Alcohol Carburante: Una Alternativa para el Desarrollo Agroindustrial (Fuel Ethanol Production: An Alternative for Agro-industrial Development, in Spanish) (Universidad Nacional de Colombia de Manizales, 2008).

F. Espinal, H. J. Martínez, X. Acevedo, La cadena de cereales, alimentos balanceados para animales, avicultura y porcicultura en Colombia. Una mirada global de su estructura y dinámica 1991-2005 (The chain of grains, balanced animal feed, poultry farming and pig farming in Colombia. An overview of its structure and dynamics 1991-2005, in Spanish). (Observatorio Agrocadenas Colombia, Ministerio de Agricultura y Desarrollo Rural, 2005).

Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technol 83 (2002) 1-11.

M. García, R. Quintero, A. López-Munguía, Biotecnología Alimentaria (Limusa, 1993).

T. P. Lyons, D. R. Kelsall, J. E. Murtagh, The Alcohol Textbook (Nottingham: University Press, 1995).

N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. R. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technol 96 (2005) 673–686.

N. Mosier, R. Hendrickson, N. Ho, M. Sedlak , M. R. Ladisch, Optimization of pH controlled liquid hot water pre-treatment of corn stover, Bioresource Technol 96 (2005) 1986-1993.

O. J. Sánchez, C.A. Cardona, Producción biotecnológica de alcohol carburante I: Obtención a partir de diferentes materias primas. Interciencia 30 (2005) 671-678.

L. R. Lynd, Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy, Annu Rev Energ Env 21 (1996) 403-465.

M. J. Negro, P. Manzanares, I. Ballesteros, J. M. Oliva, A. Cabañas, M. Ballesteros, Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass, Appl Biochem Biotech 105-108 (2003) 87- 100.

J. C. Ogier, D. Ballerini, J. P. Leygue, L. Rigal, J. Pourquié, Production d’éthanol à partir de biomasse lignocellulosique, Oil Gas Sci Technol 54 (1999) 67-94.

O. J. Sánchez, C. A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresource Technol 99 (2008) 5270-5295.

H. U. Körner, D. Gottschalk, J. Wiegel, J. Puls, The degradation pattern of oligomers and polymers from lignocelluloses, Anal Chim Acta 163 (1984) 55-66.

E. Palmqvist, B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification, Bioresource Technol 74 (2000) 17-24.

P. Persson, S. Larsson, L. J. Jönsson, N. O. Nilvebrant, B. Sivik, F. Munteanu, L. Thörneby, Lo. Gorton, Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors, Biotechnol Bioeng 79 (2002) 694-700.

P. Persson, J. Andersson, L. Gorton, S. Larsson, N. O. Nilvebrant, L. J. Jönsson, Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol, J Agr Food Chem 50 (2002) 5318-5325.

L.Olsson, ,B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates for ethanol production, Enzyme Microb Tech 18 (1996) 312-331.

M. A. Khiyami, A. L. Pometto III, R. C. Brown, Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms, J Agr Food Chem 53 (2005) 2978-2987.

P. Labeille, J. L. Baret, Y. Beaux, F. Duchiron, Comparative study of wheat flour saccharification and ethanol production with two glucoamylase preparations, Ind Crop Prod 6 (1997) 291-295.

H. Shigechi, Y. Fujita, J. Koh, M. Ueda, H. Fukuda, A. Kondo, Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and α-amylase, Biochem Eng J 18 (2004) 149-153.

Pandey, C. Soccol, C. Nigam, V. Soccol., Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse, Bioresource Technology 74 (2000) 69–80.

A. Cardona, Ó. J. Sánchez, Fuel ethanol production: Process design trends and integration opportunities, Bioresource Technol 98 (2007) 2415-2457.

G. H.Robertson, D. W. S. Wong, C. C. Lee, K. Wagschal, M. R. Smith, W. J. Orts, Native or raw starch digestion: A key step in energy efficient biorefining of grain, J Agr Food Chem 54 (2006) 353-365.

Y. Mori, T. Inaba, Ethanol Production from Starch in a pervaporation membrane bioreactor using Clostridium thermohydrosulfuricum, Biotechnol Bioeng 36 (1990) 849-853.

E. Wyman, Ethanol from lignocellulosic biomass: Technology, economics, and opportunities, Bioresource Technol 50 (1994) 3-16.

J. L. Jones, K. T. Semrau, Wood hydrolysis for ethanol production – Previous experience and the economics of selected processes, Biomass 5 (1984) 109-135.

S. K.Song, Y. Y. Lee, Acid hydrolysis of wood cellulose under low water condition, Biomass 6 (1984) 93-100.

C. N. Hamelinck, G. van Hooijdonk, A. P. C. Faaij, Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term, Biomass Bioenerg 28 (2005) 384–410.

R. P. Neuman, S. R. Rudge, M. R. Ladisch, Sulfuric acid-sugar separation by ion exclusion, React Polym 5 (1987) 55-61.

R. A. Baltz, A. F. Burcham, O. C. Sitton, N. L. Book, The recycle of sulfuric acid and xylose in the prehydrolysis of corn stover, Energy 7 (1982) 259-265.

J. H. Reith, H. den Uil, H. van Veen, W. T. A. M. de Laat, J. J. Niessen, E. de Jong, H. W. Elbersen, R. Weusthuis, J. P. van Dijken, L. Raamsdonk, Co-production of bioethanol, electricity and heat from biomass residues, 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection. Amsterdam, The Netherlands (2002).

R. P. Tengerdy, G. Szakacs, Bioconversion of lignocellulose in solid substrate fermentation, Biochem Eng J 13 (2003) 169-179.

P. A. M. Claassen, J. B. van Lier, A. M. López Contreras, E. W. J. van Niel, L. Sijtsma, A. J. M. Stams, S. S. de Vries, R. A. Weusthuis, Utilisation of biomass for the supply of energy carriers, Appl Microbiol Biot 52 (1999) 741-755.

G. E. Bullock, Ethanol from sugarcane (Sugar Research Institute-Australia, 2002).

Zs. Kádár, Zs. Szengyel, K. Réczey, Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol, Ind Crop Prod 20 (2004) 103–110.

T. W. Jeffries, Y. S. Jin, Ethanol and thermotolerance in the bioconversion of xylose by yeasts, Adv Appl Microbiol 47 (2000) 221-268.

C. R. South, D.A. Hogsett, L. R. Lynd, Continuous fermentation of cellulosic biomass to ethanol, Appl Biochem Biotech 39/40 (1993) 587-600.

T. Çakır, K. Y. Arga, M. M. Altıntaş, K. Ö. Ülgen, Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production, Process Biochem 39 (2004) 2097-2108.

M. M. Altıntaş, K. Ö. Ülgen, B. Kırdar, Z. I. Önsan, S. G. Oliver, Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors, Enzyme Microb Tech 31 (2002) 640–647.

K. Ö. Ülgen, B. Saygılı, Z. İ. Önsan, B. Kırdar, Bioconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB, Process Biochem 37 (2002) 1157-1168.

M. Knox, J. C. du Preez, S. G. Kilian,. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera, Enzyme Microb Tech 34 (2004) 453–460.

V. L dos Santos, E. F. Araújo, E. G. de Barros, W. V. Guimarães, Fermentation of starch by Klebsiella oxytoca P2, containing plasmids with α-amylase and pullulanase genes, Biotechnol Bioeng 65 (1999) 673-676.

N. W. Y Ho, Z. Chen, A. P. Brainard, Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose, Appl Environ Microb 64 (1998) 1852-1859.

J. Zaldivar, C. Roca, C. Le Foll, B. Hahn-Hägerdal, L. Olsson, Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains, Bioresource Technol 96 (2005) 1670–1676.

N. Leksawasdi, E.L. Joachimsthal, P. L. Rogers, Mathematical modeling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis, Biotechnol Lett 23 (2001) 1087-1093.

L. O. Ingram, J. B. Doran, Conversion of cellulosic materials to ethanol, FEMS Microbiol Rev 16 (1995) 235-241.

S. Zhou, L. O. Ingram, Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase, Biotechnol Lett 23 (2001) 1455-1462.

Guedon, M. Desvaux, H. Petitdemange, Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering, Appl Environ Microb 68 (2002) 53-58.

J. Hong, H. Tamaki, K. Yamamoto, H. Kumagai, Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast, Appl Microbiol Biot 63 (2003) 42-50.

Ballesteros, J. M. Oliva, F. Sáez, M. Ballesteros, Ethanol production from lignocellulosic byproducts of olive oil extraction, Appl Biochem Biotech 91-93 (2001) 237-252.

M. Ballesteros, J. M. Oliva, M. J. Negro, P. Manzanares, I. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875, Process Biochem 39 (2004) 1843–1848.

T. W. Jeffries, Ethanol fermentation on the move, Nat Biotechnol 23 (2005) 40-41.

N. Hawgood, S. Evans, P. F. Greenfield, Enhanced ethanol production in multiple batch fermentations with an auto-flocculating yeast strain, Biomass 7 (1985) 261-278.

M. B. Doelle, W. Doelle, Ethanol production from sugar cane syrup using Zymomonas mobilis, J Biotechnol 11 (1989) 25-36.

W. Grote, P. L. Rogers, Ethanol production from sucrose-based raw materials using immobilized cells of Zymomonas mobilis, Biomass 8 (1985) 169-184.

W. C. Lee, C. T. Huang, Modeling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and fructose, Biochem Eng J 4 (2000) 217–227.

Aristodou, M. Penttilä, Metabolic engineering applications to renewable resource utilization, Curr Opin Biotech 11 (2000) 187–198.

Chotani, T. Dodge, A. Hsu, M. Kumar, R. LaDuca, D. Trimbur, W. Weyler, K. Sanford, The commercial production of chemicals using pathway engineering, Biochim Biophys Acta 1543 (2000) 434-455.

Zaldivar, J. Nielsen, L. Olsson, Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration, Appl Microbiol Biot 56 (2001) 17-34.

H. Gil, W. J. Jones, T. G. Tornabene, Continuous ethanol production in a two-stage, immobilized/suspended-cell bioreactor, Enzyme Microb Tech 13 (1991) 390-399.

C. S. Gong, N. J. Cao, J. Du, G.T. Tsao, Ethanol production from renewable resources, Adv Biochem Eng Biot 65 (1999) 207-241.

C. Costa, D. I. P. Atala, F. Maugeri, R. Maciel, Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation, Process Biochem 37 (2001) 125–137.

R. Barber, M. Henningsson, N. B. Pamment, Acceleration of high gravity yeast fermentations by acetaldehyde addition, Biotechnol Lett 24 (2002) 891–895.

Y. Zhao, Y.H. Lin, Growth of Saccharomyces cerevisiae in a chemostat under high glucose conditions. Biotechnol Lett 25 (2003) 1151–1154.

S. Wang, K. C. Thomas, K. Sosulski, W. M. Ingledew, F. W. Sosulski, Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale, Process Biochem 34 (1999) 421-428.

P. Chandrakant, V. S. Bisaria,. Simultaneous bioconversion of cellulose and hemicellulose to ethanol, Crit Rev Biotechnol 18 (1998) 295–331.

D. Singh, P. Nigam, I. M. Banat, R. Marchant, A. P. McHale, Ethanol production at elevated temperatures and alcohol concentrations. Part II: Use of Kluyveromyces marxianus IMB3, World J Microb Biot 14 (1998) 823-834.

Sues, R. Millati, L. Edebo, M. J. Taherzadeh, Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus, FEMS Yeast Res 5 (2005) 669–676.

O. J.Sánchez, C. A. Cardona, Producción biotecnológica de alcohol carburante II: Integración de procesos (Biotechnological production of fuel ethanol II: Process integration, in Spanish), Interciencia 30 (2005) 679-686.

M. I. Montoya, J. A. Quintero, Ó. J. Sánchez, C. A. Cardona, Efecto del esquema de separación de producto en la producción biotecnológica de alcohol carburante (Effect of the product separation scheme in the biotechnological production of fuel ethanol, in Spanish), II Simposio sobre Biofábricas. Medellín, Colombia (2005).

M. R. Wolf Maciel, R. P. Brito, Evaluation of the dynamic behavior of an extractive distillation column for dehydration of aqueous ethanol mixtures, Comput Chem Eng 19 (Suppl.) (1995) S405-S408.

Meirelles, S. Weiss, H. Herfurth, Ethanol dehydration by extractive distillation, J Chem Technol Biot 53 (1992) 181-188.

S. A. Leeper, G. T. Tsao, Membrane separations in ethanol recovery: An analysis of two applications of hyperfiltration, J Membrane Sci 30 (1987) 289-312


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2019 Praise Worthy Prize