Biodiesel Production: Biotechnological Approach


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Fermentation is used to transform raw materials such as sugar, starch or other substrates with living cells to more complex target products such as alcohols, ketones, vitamins, antibiotics, amino acids or often achiral organic molecules. Biodiesel together with glycerol are produced by transesterification process, which can be carried out by two ways, chemically catalyzed or biocatalytically. Where, methanol from non-renewable oil is the most used raw material. Chemical catalysis has several drawbacks as fatty acid alkaline salts (soaps) generation, difficult glycerol recovering, energetically intensive process, using alkaline catalysts or elevated reaction temperatures and high reaction times using catalysis acid. Biocatalytic approach -whole-cell or enzymatic- is located at the interface between fermentation processes and petrol-based chemistry. This work reviews the biodiesel production through biocatalytic process, and analyzes the biotechnological transformation of glycerol (by product of biodiesel production) to ethanol (a potentially important raw material in biodiesel production), and other bioconversion products
Copyright © 2012 Praise Worthy Prize - All rights reserved.

Keywords


Biodiesel; Biocatalytic Process; Glycerol Conversion; Ethanol Bioproduction

Full Text:

PDF


References


M. J. Haas, A. J. McAloon, W. C. Yee, T. A. Foglia, A process model to estimate biodiesel production costs, Bioresource Technol 97(4) (2006) 671-678.

J. van Gerpen, Biodiesel processing and production, Fuel Process Technol 86 (2005) 1097– 1107.

S. Shah, S. Sharma, M. N. Gupta, Biodiesel preparation by lipase-catalyzed transesterification of jatropha oil, Energ Fuel 18 (2004) 154-159.

H. Fukuda, A. Kondo, H. Noda, Biodiesel fuel production by transesterification of oils, J Biosci Bioeng 92(5) (2001) 405-416.

Y. Xu, W. Du, D. Liu, J. Zeng, A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium, Biotechnol Lett25 (2003) 1239-1241.

Y. Shimada, Y. Watanabe, T. Samukawa, A. Sugihara, H. Noda, H. Fukuda, Y. Tominaga, Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase, J. Am. Oil Chem. Soc. 76 (1999) 789-793.

Z. X. Wang, J. Zhuge, H. Fang, B.A. Prior. Glycerol production by microbial fermentation: a review, Biotechnol Adv 19 (2001) 201–223.

B. O. Solomon, A. P. Zeng, H. Biebl, H. Schlieker, C. Posten, W. D. Deckwer, Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol, J Biotechnol 39 (1995) 107–117.

F. Barbirato, A. Bories, Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions, Res Microbiol 148 (1997) 475–484.

K. Menzel, A. P. Zeng, W. D. Deckwer. High concentration and productivity of 1,3- propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae, Enzyme Microb Technol 20 (1997) 82–86.

Y. Dharmadi, A. Murarka, R. Gonzalez, Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering, Biotechnol Bioeng 94 (2006) 821–829.

G. P. da Silva, M. Mack, J. Contiero, Glycerol: A promising and abundant carbon source for industrial microbiology, Biotechnol Adv 27(1) (2009), 30-39.

S. S. Yazdani, R. Gonzalez, Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products, Metab Eng 10(6) (2008) 340-351.

T. Ito, Y. Nakashimada, K. Senba, T. Matsui, N. Nishio, Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process, J Biosci Bioeng 100 (2005) 260–265.

H. Fukuda, A. Kondo, H. Noda, Biodiesel fuel production by transesterification of oils, J Biosci Bioeng 92(5) (2001) 405-416.

Y. Shimada, Y. Watanabe, A. Sugihara, Y. Tominaga, Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing, J. Mol. Catal. B: Enzym. 17(3-5) (2002) 133-142.

F. Yagiz, D. Kazan, N. Akin, Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites, Chem. Eng. J. 134 (2007) 262-267.

G. N. Jarvis, E. R. B. Moore, J. H. Thiele, Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J Appl Microbiol 83 (1997) 166–174.

P. F. Fonseca Amaral, T. Felix Ferreira, G. Cardoso Fontes, M. A. Zarur Coelho, Glycerol valorization: New biotechnological routes, Food Bioprod. Process. In Press-Corrected Proof-doi:10.1016/j.fbp.2009.03.008 (2009) 1-8.

T. Ito, Y. Nakashimada, K. Senba, T. Matsui, N. Nishio, Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100 (2005) 260–265.

S. S. Yazdani, R. Gonzalez, Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 18 (2007) 213–219.

F. Barbirato, E. H. Himmi, T. Conte, A. Bories, 1,3-Propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Industrial Crops and Products 7 (1998) 281–289.

W.-D. Deckwer, Microbial conversion of Glycerol to 1,3-Propanediol, FEMS Microbiol. Rev. 16 (1995) 143-149.

D. Hekmat, R. Bauer, J. Fricke, Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans, Bioprocess Biosyst Eng 26 (2003) 109–116.

R. Bauer, N. Katsikis, S. Varga, D. Hekmat,Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process, Bioprocess Biosyst Eng 5 (2005) 37–43.

M. Wethmar, W. D. Deckwer, Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans, Biotechnol Tech 13 (1999) 283–287.

S. Y. Lee, S. H. Hong, S. H. Lee, S. J. Park, Fermentative production of chemicals that can be used for polymer synthesis, Macromol Biosci 4 (2004) 157–164.

F. Barbirato, D. Chedaille, A. Bories, Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol 47 (1997) 441–446.

E. H. Himmi, A. Bories, A. Boussaid, L.Hassani, Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. Shermanii, Appl Microbiol Biotechnol 53 (2000) 435–440.

P. I. Nikel, M. J. Pettinari, M. A. Galvagno, B. S. Méndez., Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures, Appl Microbiol Biotechnol 77 (2008) 1337–1343.

E. Catoni, Overexpression and protein engineering of lipase a and b from geotrichum candidum cmicc335426, Ph.D. dissertation, Fakultät Chemie der Universität Stuttgart, 1999.

P. Domínguez de María, C. Carboni-Oerlemans, B. Tuin, G. Bargeman, A. van der Meer, R. van Gemert, J. Mol. Catal. B: Enzym. 37 (2005) 36-46.

A. N. Paiva, V.M. Balcão, J. Malcata, Kinetics and mechanisms of reactions catalyzed by immobilized lipases, Enzyme Microb. Technol. 27 (2000) 187-204.

E. N. Vulfson, W. P. Petersen, Industrial applications of lipases (Cambridge University Press, 1994).

R. Sharma, Y. Chisti, U. C. Banerjee, Production, purification, characterization, and applications of lipases, Biotechnol. Adv. 19 (2001) 627-662

K-E. Jaeger, B. W. Dijkstra, M. T. Reetz, Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases, Annu. Rev. Microbiol. 53 (1999) 315-351.

M. Cygler, J. D. Schrag, J. L. Sussman, M. Harel, I. Silman, M. K. Gentry, B. P. Doctor, Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins, Protein Sci. 2(3) (1993) 366-382.

S. Al-Zuhair, M. Hasan, K.B. Ramachandran, Kinetics of the enzymatic hydrolysis of palm oil by lipase, Process Biochem. 38 (2003) 1155-1163.

M. Nakajima, H. Nabetani, S. Ichikawa, M. Seki, T. Maruyama, Method of producing activated lipase. United States Patent US 6528293 (2003).

V. M. Balcão, A. L. Paiva, F. X. Malcata, Bioreactors with immobilized lipases: State of the art Enzyme, Microb. Technol. 18 (1996) 392-416.

Y. Guo, D.S. Clark, Activation of enzymes for nonaqueous biocatalysis by denaturing concentrations of urea. Biochem. Biophys. Acta 1546 (2001) 406-411.

A. Illanes, Stability of biocatalysts. Electron. J. Biotechnol. 2 (1999) 7-15.

M. Yasuda, T. Kigushi, H. Kashahara, H. Ogino, H. Ishikawa. Effect of additives on transesterification activity of Rhizopus chinensis lipase, J. Biosci. Bioeng. 90(6) (2000) 681-683.

M. Persson, I. Mladenoska, E. Wehthe, P. Adlercreutz, Preparation of lipases for use in organic solvents, Enzyme Microb. Technol. 31 (2002) 833-841.

J. C. Wu, B. D. Song, A. H. Sing, Y. Hayashi, M. M. R. Talukder, S.C. Wang, Esterification reactions catalyzed by surfactant-coated Candida rugosa lipase in organic solvents, Process Biochem. 37 (2002) 1229-1233.

M. Iso, B. Chen, M. Eguchi, K. Takashi, S. Sureka, Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase, J. Mol. Catal. B: Enzym. 16 (2001) 53-58.

D. J. van Unen, J.F.J. Engbersen, D.N. Reinhoudt, Large acceleration of α-chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents. Biotechnol Bioeng 59 (1998) 553-556.

B. C. Koops, H. M. Verheij, A. J. Slotboom, M. R. Egmond, Effect of chemical modification on the activity of lipases in organic solvents, Enzyme Microb. Technol. 25 (1999) 622-631.

A. M. Santos, M. Vidal, Y. Pacheco, J. Frontera, C. Baez, O. Ornellas, G. Barletta, K. Griebenow, Effect of crown ethers on structure, stability, activity, and enantioselectivity of subtilisin Carlsberg in organic solvents, Biotechnol. Bioeng. 74 (2001) 295-308.

W. Tischer, V. Kasche, Immobilized enzymes: crystals or carriers? Tibtech 17 (1999) 326-335.

R. R.Chen, Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl. Microbiol. Biotechnol.74 (2007) 730-738.

N. S. Dosanjh, J. Kaur, Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnol. Appl. Biochem. 36 (2002) 7-12..

M. Habulin, V. Krmelj, Z. Knez, Synthesis of Oleic Acid Esters Catalyzed by Immobilized Lipase. J. Agric. Food. Chem. 44 (1996) 338-342.

Y. Watanabe, Y. Shimada, A. Sugihara, Y. Tominaga, Enzymatic Conversion of Waste Edible Oil to Biodiesel Fuel in a Fixed-Bed Bioreactor. J. Am. Oil Chem. Soc. 78 (2001) 703-707.

I. Gill, E. Pastor, A. Ballesteros, Lipase−Silicone Biocomposites: Efficient and Versatile Immobilized Biocatalysts. J. Am. Chem. Soc. 121(41) (1999) 9487-9496.

M. Arroyo, Inmovilización de enzimas. Fundamentos, métodos y aplicaciones, Ars Pharmaceutica 39(2) (1998) 111-127.

S. Fadiloğlu, Z. Sőylemez, Olive Oil Hydrolysis by Celite-Immobilized Candida rugosa Lipase, J. Agric. Food Chem. 46 (1998) 3411-3414.

A.E. Ivanov, M.P. Schneider, Methods for the immobilization of lipases and their use for ester synthesis, J. Mol. Catal. B: Enzym. 3 (1997) 303-309.

S. K. Khare, M. Nakajima, Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil, Food Chem. 68 (2000) 153-157.

J. M. Palomo, G. Muñoz, G. Fernande-Lorente, C. C. Mateo, C. Fernandez-Lafuente, R. Fernandez-Lafuente, J.M. Guisán, J. Mol. Catal. B: Enzym.19–20 (2002) 279-286.

E. B. Pereira, J. M. Zanin, H. F Castro, Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions, Braz. J. Chem. Eng. 20(4) (2003) 343-355.

D. Rousseau, A. G. Marangoni, Tailoring the Textural Attributes of Butter Fat/Canola Oil Blends via Rhizopus arrhizus Lipase-Catalyzed Interesterification. 1. Compositional Modifications, J. Agric. Food Chem. 46 (1998) 2368-2374.

R. A. Wisdom, P. Dunnill, M. D. Lilly, Enzymic interesterification of fats: Factors influencing the choice of support for immobilized lipase, Enzyme Microb. Technol. 6(10) (1984) 443-446.

S. Y. Furukawa, T. Ono, H. Ijima, K.Kawakami, Enhancement of activity of sol–gel immobilized lipase in organic media by pretreatment with substrate analogues, J. Mol. Catal. B: Enzym. 15 (2001) 65-70.

A. F. Hsu, T. A. Foglia, S. Shen, Immobilization of Pseudomonas cepacia lipase in a phyllosilicate sol–gel matrix: effectiveness as a biocatalyst, Biotechnol. Appl. Biochem. 31 (2000) 179-183.

D. Magnin, S. Dumitriu, P. Magny, E. Chornet, Lipase Immobilization into Porous Chitoxan Beads: Activities in Aqueous and Organic Media and Lipase Localization, Biotechnol. Prog. 17 (2001) 734-737.

M. T. Reetz, K. E. Jaeger, Overexpression, immobilization and biotechnological application of Pseudomonas lipases, Chem. Phys. Lipids 93 (1998) 3-14

M. G. Carneiro-da-Cunha, J. M. G. Rocha, F. A. P. Garcia, M. H. Gil, Lipase immobilisation on to polymeric membranes, Biotechnol. Tech. 13 (1999) 403-409.

N. Hilal, R. Nigmatulin, A. Alpatova, Immobilization of cross-linked lipase aggregates within microporous polymeric membranes, J. Membr. Sci. 238 (2004) 131-141.

S. Montero, A. Blanco, M. D. Virto, L. C. Landeta, I. Agud, R. Solozabal, J. M. Lascaray, M. de Renobales, M. J. Llama, J. L. Serra, Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme, Enzyme. Microb. Technol. 15 (1993) 239-247.

M. Rucka, B. Turkiewicz, Ultrafiltration membranes as carriers for lipase immobilization, Enzyme Microb. Technol. 12 (1990) 52-55.

M. Matsumoto, N. Sumi, K. Ohmori, K. Kondo, Immobilization of lipase in microcapsules prepared by organic and inorganic materials, Proc. Biochem. 33(5) (1998) 535-540.

S. S. Betigeri, S. H. Neau, Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads, Biomaterials 23 (2002) 3627-3636.

H. H. el Rassy, A. C. Pierre, Application of lipase encapsulated in silica aerogels to a transesterification reaction in hydrophobic and hydrophilic solvents: Bi-Bi Ping-Pong kinetics, J. Mol. Catal. B: Enzym. 30 (2004) 137-150.

E. Taqieddin, M. Amiji, Enzyme immobilization in novel alginate–chitosan core-shell microcapsules, Biomaterials 25 (2004) 1937-1945.

K. Ban, M. Kaieda, T. Matsumoto, A. Kondo, H. Fukuda, Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 8 (2001) 39-43.

K. Ban, S. Hama, K. Nishizuka, M. Kaieda, T. Matsumoto, A. Kondo, H. Noda, H. Fukuda, Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production, J. Mol. Catal. B: Enzym. 17 (2002) 157–165.

S. Hama, H. Yamaji, M. Kaieda, M. Oda, A. Kondo, H. Fukuda, Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production, Biochem. Eng. J. 21 (2004) 155-160.

M. Kaieda, T. Samukawa, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, F. Nomoto, K. Ohtsuka, E. Izumoto, H. Fukuda, Biodiesel Fuel Production from Plant Oil Catalyzed by Rhizopus oryzae Lipase in a Water-Containing System without an Organic Solvent, J Biosci Bioeng 88(6) (1999) 627-631.

M. Kaieda, T. Samukawa, A. Kondo, H. Fukuda, Effect of Methanol and Water Contents on Production of Biodiesel Fuel from Plant Oil Catalyzed by Various Lipases in a Solvent-Free System,. J Biosci Bioeng 91(1) (2001) 12-15.

M. M. Soumanoua, U. T. Bornscheuer, Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil, Enzyme Microb. Technol. 33 (2003) 97–103.

H. Noureddini, X. Gao, R. S. Philkana, Immobilized Pseudomonas Cepacia Lipase for Biodiesel Fuel Production from Soybean Oil. Bioresource Technol 96(7) (2005) 769-777.

A. C. Oliveira, M. F. Rosa,; M. R. Aires-Barros,; J. M. S. Cabral, Enzymatic esterification of ethanol and oleic acid - a kinetic study. J. Mol. Catal. B: Enzym. 11 (2001) 999–1005.

R. D. Abigor, P. O. Uadia, T. A. Foglia, M. J. Haas, K. C. Jones, E. Okpefa, U. Obibuzor, M. E. Bafor, Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils, Biochem. Soc. Trans. 28(6) (2000) 979-981.

K. T. Lee, T. A. Foglia, K. S. Chang, Production of Alkyl Ester as Biodiesel from Fractionated Lard and Restaurant Grease, J. Am. Oil Chem. Soc. 79(2) (2002) 191-195.

W. H. Wu, T. A. Foglia, W. M. Marmer, J. G. Phillips, Optimizing Production of Ethyl Esters of Grease Using 95% Ethanol by Response Surface Methodology, J. Am. Oil Chem. Soc. 76 (1999) 517-521.

A. F. Hsu, K. C. Jones, T. A. Foglia, W. M. Marmer, Optimization of alkyl ester production from grease using a phyllosilicate sol-gel immobilized lipase. Biotechnol Lett25 (2003) 1713-1716.

Y. Luo, Y. Zeng, Z. Yiang, Y. Ma, D. Wei, A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification, Appl. Microbiol. Biotechnol. 73 (2006) 349-355.

W. Du, Y. Xu, D. Liu, Lipase-catalysed transesterification of soya bean oil for biodiesel production during continuous batch operation, Biotechnol. Appl. Biochem. 38 (2003) 103-106.

M. Iso, B. Chen, M. Eguchi, K. Takashi, S. Sureka, Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase, J. Mol. Catal. B: Enzym. 16 (2001) 53-58.

V. Rathore, G. Madras, Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide, Fuel 86 (2007) 2650-2659.

S. Hama, H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda, H. Fukuda. Biodiesel fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem. Eng. J. 34 (2007) 273–278.

W. Li, W. Du, D. Liu, Optimization of whole-cell catalyze methanolysis of soybean oil for biodiesel production using response surface methodology, J. Mol. Catal., B Enzym. 45 (2007) 122–127.

S. Tamalampudi, M. R. Talukder, S. Hama, T. Numata, A. Kondo, H. Fukuda, Enzymatic production of biodiesel from jatropha oil: A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst, Biochem. Eng. J. 39 (2008) 185–189.

W. Li, W. Du, D. Liu, Rhizopus orzae IFO 4697l whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in ter-butanol system, Process Biochem. 42 (2007) 1481–1485.

M. G. Devanesan, T. Viruthagiri, N. Sugumar, Transesterification of Jatropha oil using immobilized Pseudomonas fluorescens, Afr. J. Biotechnol. 6(21) (2007) 2497-2501.

T. Matsumoto, S. Takahashi, M. Kaieda, M. Ueda, A. Tanaka, H. Fukuda, A. Kondo, Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhyzopus oryzae lipase is applicable to biodiesel fuel production. Appl. Microbiol. Biotechnol. 57 (2001) 515–520.

T. Matsumoto, H. Fukuda, M. Ueda, A. Tanaka, A. Kondo, Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain, Appl. Environ. Microbiol. 68 (2002) 4517–4522

B. Gao, E. Su, J. Lin, Z. Jiang, Y. Ma, D. Wei, Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp for biodiesel production, J. Biotechnol. 139 (2009) 169–175.

A. F. Hsu, K.c. Jones, W.M. Marmer, T.A. Foglia, Production of Alkyl Esters from Tallow and Grease Using Lipase Immobilized in a Phyllosilicate Sol-Gel. J. Am. Oil Chem. Soc. 78 (2001) 585-588.

J. W. Chen, W. T. Wu, Regeneration of immobilized Candida antarctica lipase for transesterification, J Biosci Bioeng 95 (2003) 466-469.

M. Cygler, J.D. Schrag, Structure and conformational flexibility of Candida rugosa lipase, Biochim. Biophys. Acta 1441 (1999) 205-214.

T. Samukawa, M., Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, H. Fukuda, Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil, J Biosci Bioeng 90 (2000) 180-183.

M. K. Modi, J. R. C. Reddy, B. V. S. K. Rao, R. B. N. Prasad, Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor, Biotechnol Lett 28 (2006) 637-640.

R. H. Valivety, P. J. Halling, A. D. Peilow, A. R. Macrae, Lipases from different sources vary widely in dependence of catalytic activity on water activity, Biochim Biophys Acta 1122 (1992) 143-146.

S. Negishi, S. Shirasawa, Y. Arai, J. Suzuki, S. Mukataka, Activation of powdered lipase by cluster water and the use of lipase powders for commercial esterification of food oils, Enzyme Microb. Technol. 32 (2003) 66-70.

S. Panke, M. G. Wubbolts, Enzyme technology and bioprocess engineering, Curr. Opin. Biotechnol. 13 (2002) 111-116.

K. K. Kim, H. K. Song, D. H. Shin, K. Y. Hwang, S. W. Suh, The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor, Structure 5 (1997) 173-186.

M. Ferrer, F.J. Plou, G. Fuentes, M. A. Cruces, L. Andersen, O. Kirk, M. Christensen, A. Ballesteros, Effect of the Immobilization Method of Lipase from Thermomyces lanuginosus on Sucrose Acylation, Biocatal. Biotransform.. 20 (2002) 63-71.

T. Antczak, J. Patura, M. Szczesna-Antczak, D. Hiler, S. Bielecki, Sugar ester synthesis by a mycelium-bound Mucor circinelloides lipase in a micro-reactor equipped with water activity sensor, J. Mol. Cat. B: Enzym. 29 (2004) 155-161.

D. A. Miller, W. H. Blanch, J. M. Prausnitz, Enzyme- Catalyzed Interesterification of Triglycerides in Supercritical Carbon Dioxide, Ind. Eng. Chem. Res. 30 (1991) 939-946.

M. Kondo, K. Rezaei, F. Temelli, M. Goto, On-line Extraction-Reaction of Canola Oil with Ethanol by Immobilized Lipase in SC-CO2, Ind. Eng. Chem. Res. 41 (2002) 5770-5774


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize