Orientational Order within Biological Membranes

D. Jesenek(1*), V. Kralj-Iglič(2), Aleš Iglič(3), Samo Kralj(4)

(1) Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,
(2) Laboratory of Clinical Biophysics, Faculty of Health Studies, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia., Slovenia
(3) Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, 1000 Ljubljana, Slovenia., Slovenia
(4) Laboratory Physics of Complex Systems, Faculty of Natural Sciences and Mathematics, Koroška 160, 2000 Maribor, Slovenia and Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia., Slovenia
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Recently developed approaches analyzing the degree of in-plane orientational  ordering are compared. The first one originates from an intrinsic anisotropic shape of membrane constituents, based on which the mismatch curvature tensor M is introduced. The second one originates from the nematic tensor order parameter Q reflecting average local degree of orientational ordering. Based on these tensors free energy of systems are derived taking into account symmetry allowed combinations of tensors. From both approaches the degree of local orientational ordering is determined as a function of membrane shape. In the paper we discuss relevance of these approaches
Copyright © 2012 Praise Worthy Prize - All rights reserved.

Keywords


Vesicles; Orientational Order; Topological Defects

Full Text:

PDF


References


T. Fischer, Bending stiffness of lipid bilayers. III. Gaussian curvature, Journal de Physique II (France), Volume 2, 1992, Pages 337-343.

V. Kralj-Iglič, B. Babnik, et al., Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles, J. Stat. Phys., Volume 125, 2006, Pages 727-752.

Š. Perutkova, M. Daniel, et al., Elastic deformations in hexagonal phases studied by small angle X-ray diffraction and simulations, Phys. Chem. Chem. Phys., Volume 13, 2011, Pages 3100-3107.

J.B. Fournier, Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions, Phys. Rev. Lett., Volume 76, 1996, Pages 4436-4439.

V. Kralj-Iglič, V. Heinrich, et al., Free energy of closed membrane with anisotropic inclusions, Eur. Phys. J B, Volume 10, 1999, Pages 5-8.

D. Kabaso, M. Lokar M,, et al., Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines, Int. J Nanomedicine, Volume 6, 2011, Pages 495-509.

T. Baumgart, B.R. Capraro BR, et al., Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids, Annu. Rev. Phys. Chem. Volume 62, 1999, Pages 483-506

F.C. MacKintosh, T.C. Lubensky, Orientational order, topology, and vesicle shapes, Phys. Rev. Lett., Volume 67, 1991, Pages 1169-1172.

V. Kralj-Iglič, A. Iglič, et al., Microtubes and nanotubes of a phospholipid bilayer membrane, Journal of Physics A: Mathematical and General, Volume 35, 2002, Pages 1533-1549.

A. Iglič, B. Babnik, et al., On the role of membrane anisotropy in the beading transition of undulated tubular membrane structures, J. Phys. A: Math Gen., Volume 38, 2005, Pages 8527-8536.

N. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys., Volume 51, 1979, Pages 591-648.

H. Poincaré, Mémoire sur les courbes définiés par une équation differentielle, J Math Pures Appl., Volume 2, 1886, Pages 151-217.

V. Vitelli, A.M. Turner, Anomalous coupling between topological defects and curvature, Phys Rev. Lett., Volume 93, 2004, Pages 215301.

A. Iglič, M. Lokar, et al., Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes, Blood Cells, Molecules and Diseases, Volume 39, 2007, Pages 14-23.

W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch. C, Volume 28, 1973, Pages 693-703.

S. Kralj, R. Rosso, E.G. Virga, Curvature control of valence on nematic shells, Soft Matter, Volume 7, 2011, Pages 670-683.

V. Vitelli, D.R. Nelson, Nematic textures in spherical shells, Phys. Rev. E, Volume 74, 2006, Pages 021711-021721.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize