Characterization of Lignocellulosic Biofuels by TGA


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


Four types of biomass for use as biofuels were selected (pellets, shelled pine sawdust, rice and Rumex tianschanicus) and analyzed with a TA Instrument TGA Q500IF to define the three main components content (hemicellulose, cellulose and lignin). Runs were carried out under pyrolysis conditions and by means an algorithm implemented with Scilab tool. Therefore, the main objective was to develop a tool to determine parameters such as ash content, moisture content, amount of char, and content of hemicellulose, cellulose and lignin for combustion reactor from thermogravimetric analysis. This tool will be later integrated into a rigorous model that allows predicting the behavior of alternative biomass combustion plant residues.
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Cellulose; Hemicellulose; Lignin; Thermogravimetric Analysis

Full Text:

PDF


References


Y. F. Huang, W. H. Kuan, P. T. Chiueh, and S. L. Lo, A sequential method to analyze the kinetics of biomass pyrolysis, Bioresource Technology 102 (2011) 9241-9246.
http://dx.doi.org/10.1016/j.biortech.2011.07.015

C. Di Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in Energy and Combustion Science 34 (2008) 47-90.
http://dx.doi.org/10.1016/j.pecs.2006.12.001

D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, Kinetic study on thermal decomposition of woods in oxidative environment, Fuel 88 (2009) 1024-1030.
http://dx.doi.org/10.1016/j.fuel.2008.10.034

J. E. White, W. J. Catallo, and B. L. Legendre, Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies, Journal of Analytical and Applied Pyrolysis 91 (2011) 1-33.
http://dx.doi.org/10.1016/j.jaap.2011.01.004

M. Carrier, A. Loppinet-Serani, D. Denux, J.-M. Lasnier, F. Ham-Pichavant, F. Cansell, and C. Aymonier, Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass, Biomass & Bioenergy 35 (2011) 298-307.
http://dx.doi.org/10.1016/j.biombioe.2010.08.067

K. G. Mansaray, and A. E. Ghaly, Thermal degradation of rice husks in nitrogen atmosphere, Bioresource Technology 65 (1998) 13-20.
http://dx.doi.org/10.1016/s0960-8524(98)00031-5

N. Worasuwannarak, T. Sonobe, and W. Tanthapanichakoon, Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique, Journal of Analytical and Applied Pyrolysis 78 (2007) 265-271.
http://dx.doi.org/10.1016/j.jaap.2006.08.002

S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan, An overview of the organic and inorganic phase composition of biomass, Fuel 94 (2012) 1-33.
http://dx.doi.org/10.1016/j.fuel.2011.09.030

J. S. Lim, Z. Abdul Manan, S. R. Wan Alwi, and H. Hashim, A review on utilisation of biomass from rice industry as a source of renewable energy, Renewable and Sustainable Energy Reviews 16 (2012) 3084-3094.
http://dx.doi.org/10.1016/j.rser.2012.02.051

K. Raveendran, A. Ganesh, and K. C. Khilar, Influence of mineral matter on biomass pyrolysis characteristics, Fuel 74 (1995) 1812-1822.
http://dx.doi.org/10.1016/0016-2361(95)80013-8

H. J. Park, Y.-K. Park, and J. S. Kim, Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis, Fuel Processing Technology 89 (2008) 797-802.
http://dx.doi.org/10.1016/j.fuproc.2008.01.003

C. A. Ulloa, A. L. Gordon, and X. A. Garcia, Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust, Fuel Processing Technology 90, (2009) 583-590.
http://dx.doi.org/10.1016/j.fuproc.2008.12.015

A. Demirbas, Biorefineries: Current activities and future developments, Energy Conversion and Management 50 (2009) 2782-2801.
http://dx.doi.org/10.1016/j.enconman.2009.06.035

T. Filbakk, R. Jirjis, J. Nurmi, and O. Hoibo, The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets, Biomass & Bioenergy 35 (2011) 3342-3349.
http://dx.doi.org/10.1016/j.biombioe.2010.09.011

S. Link, S. Arvelakis, A. Paist, A. Martin, T. Liliedahl, and K. Sjostrom, Atmospheric fluidized bed gasification of untreated and leached olive residue, and co-gasification of olive residue, reed, pine pellets and Douglas fir wood chips, Applied Energy 94 (2012) 89-97.
http://dx.doi.org/10.1016/j.apenergy.2012.01.045

L. Shang, N. P. K. Nielsen, J. Dahl, W. Stelte, J. Ahrenfeldt, J. K. Holm, T. Thomsen, and U. B. Henriksen, Quality effects caused by torrefaction of pellets made from Scots pine, Fuel Processing Technology 101 (2012) 23-28.
http://dx.doi.org/10.1016/j.fuproc.2012.03.013

J. Rizhikovs, J. Zandersons, B. Spince, G. Dobele, and E. Jakab, Preparation of granular activated carbon from hydrothermally treated and pelletized deciduous wood, Journal of Analytical and Applied Pyrolysis 93 (2012) 68-76.
http://dx.doi.org/10.1016/j.jaap.2011.09.009

I. Obernberger, and G. Thek, Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour, Biomass & Bioenergy 27 (2004) 653-669.
http://dx.doi.org/10.1016/j.biombioe.2003.07.006

R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, A review on biomass as a fuel for boilers, Renewable & Sustainable Energy Reviews 15 (2011) 2262-2289.
http://dx.doi.org/10.1016/j.rser.2011.02.015

A. Demirbas, Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science 30 (2004) 219-230.
http://dx.doi.org/10.1016/j.pecs.2003.10.004

J. F. Saldarriaga, A. Pablos, M. Amutio, R. Aguado, and M. Olazar, Validation of experimental correlations for calculating HHV from proximate analysis of biomass materials, in ANQUE International Congress of Chemical Engineering "Innovating for the future"(Sevilla, España, 2012).

C. A. Koufopanos, G. Maschio, and A. Lucchesi, Kinetic modeling of the pyrolysis of biomass and biomass components, Canadian Journal of Chemical Engineering 67 (1989) 75-84.
http://dx.doi.org/10.1002/cjce.5450670111

J. A. Caballero, J. A. Conesa, R. Font, and A. Marcilla, Pyrolysis kinetics of almond shells and olive stones considering their organic fractions, Journal of Analytical and Applied Pyrolysis 42 (1997) 159-175.
http://dx.doi.org/10.1016/s0165-2370(97)00015-6

G. Varhegyi, M. J. Antal, E. Jakab, and P. Szabo, Kinetic modeling of biomass pyrolysis, Journal of Analytical and Applied Pyrolysis 42 (1997) 73-87.
http://dx.doi.org/10.1016/s0165-2370(96)00971-0

J. J. M. Orfao, F. J. A. Antunes, and J. L. Figueiredo, Pyrolysis kinetics of lignocellulosic materials - three independent reactions model, Fuel 78 (1999) 349-358.
http://dx.doi.org/10.1016/s0016-2361(98)00156-2

M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao, and M. Olazar, Kinetic study of lignocellulosic biomass oxidative pyrolysis, Fuel 95 (2012) 305-311.
http://dx.doi.org/10.1016/j.fuel.2011.10.008

H. S. Teng, H. C. Lin, and J. A. Ho, Thermogravimetric analysis on global mass loss kinetics of rice hull pyrolysis, Industrial & Engineering Chemistry Research 36 (1997) 3974-3977.
http://dx.doi.org/10.1021/ie970017z

H. Teng, and Y. C. Wei, Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment, Industrial & Engineering Chemistry Research 37 (1998) 3806-3811.
http://dx.doi.org/10.1021/ie980207p


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize