Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Study of Transonic Flows Using Various Turbulence Models

N. Bekka(1*), R. Bessaïh(2), M. Sellam(3)

(1) LMEE Laboratory, University of Evry Val d’Essonne, 40, Rue du Pelvoux 91020, Evry Cedex, France
(2) LEAP Laboratory, Department of Mechanical Engineering, Faculty of Engineering, University of Mentouri-Constantine, Algeria
(3) LMEE Laboratory, University of Evry Val d’Essonne, 40, Rue du Pelvoux 91020, Evry Cedex, France
(*) Corresponding author


DOI: https://doi.org/10.15866/irease.v8i6.8824

Abstract


In this paper, validation and assessment of various turbulence models are performed in transonic flows, including an algebraic Baldwin Lomax model, Spalart Allmaras one equation, and  two equation (k-ε, k-ω and SST k-ω) turbulence models. The NACA 0012 airfoil has been chosen for the turbulence model validation studies. The three test cases selected here included both attached and separated transonic flows. This study shows that the five turbulence models provide satisfactory results for transonic attached flows. However, all models, fail to predict the location of the shock correctly when a strong shock and a shock induced flows separation are present. Compared to other models, it has been shown that the SST k-ω model is the most robust model in the prediction of lift coefficient for all cases. Computed results are performed with the CFD-FASTRAN code by using the fully implicit scheme for time integration, and the upwind Roe flux difference splitting scheme for space discretization augmented by a high order Min-Mod limiter to damp spurious oscillations and to allow for sharp shock resolution
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


umerical Study; Transonic Flows; Turbulence Models; Airfoil

Full Text:

PDF


References


C.A.J., Fletcher, Computational Techniques for Fluid Dynamics (vol.2 Springer-Verlag, Berlin,1991).
http://dx.doi.org/10.1002/zamm.19920721216

J.D.Jr., Anderson, Modern Compressible Flow with Historical Perspective (McGraw-Hill, Inc. 1990).

T.L. Holst, Computation Fluid Dynamics Drag Prediction Results from the Viscous Transonic Airfoil Workshop (NASA-TM, 100095, April 1988)

S.S.Desai, and R. Rangrajan, Viscous transonic flow over airfoils using transonic full potential equation in a system of Cartesian coordinates , AIAA Paper No 87-0411, 1987.
http://dx.doi.org/10.2514/6.1987-411

O. C. Resende, The evolution of the aerodynamic design tools and transport aircraft wings at Embracer, Journal of Brazilian Society Mech. Science & Eng., 26 (4) , pp. 379-389, 2004
http://dx.doi.org/10.1590/s1678-58782004000400004

C.L. Rumsey, S.L.Taylor, J.L. Thomas, and W.K. Anderson, Application of an -upwind Navier-Stokes code to two dimensional transonic airfoil flow, AIAA Paper No 87-0413, 1987.
http://dx.doi.org/10.2514/6.1987-413

M. Nandanan , E.Stanewsky, and G.R.Inger, Airfoil flow analysis with a special solution for shock/boundary-layer interaction, AIAA journal ,19(12) , pp.1540-1546, 1981.
http://dx.doi.org/10.2514/3.60092

Y.G. Lai, R. So and A.J. Przekwas, Turbulent transonic flow simulation using a pressure-based method , Int. Journal of Engineering Sciences, 33(4) 469-483, 1995
http://dx.doi.org/10.1016/0020-7225(94)00087-5

E. Goncalves, R. Hondeville, Reassessment of the wall functions approach for RANS computations, Aerospace Science and Technology, n.5, pp 1-14, 2001.
http://dx.doi.org/10.1016/s1270-9638(00)01083-x

G. Barakos, D.Drikakis, Numerical simulation of transonic buffet flows using various closures, Int. Journal of Heat and Fluid Flow,n.21, pp. 620-626, 2000.
http://dx.doi.org/10.1016/s0142-727x(00)00053-9

C.S. Kim, C. Kim, O.H. Rho, Parallel computations of high-lift airfoil flows using two-equation turbulence models, AIAA Journal, 38(8) pp.1360-1368, 2000.
http://dx.doi.org/10.2514/3.14557

J.Y. Yang, Implicit weighted essentially non-oscillatory schemes for the compressible Navier-Stokes equations, AIAA Journal, 39(11), pp 2082-2090, 2001.
http://dx.doi.org/10.2514/2.1231

T. Knopp, T. Alrutz, D. Schwamborn, A grid and flow adaptive wall-function method for RANS turbulence modeling, Journal of Computational Physics, n. 220,pp. 19-40, 2006.
http://dx.doi.org/10.1016/j.jcp.2006.05.003

E.D.V. Bigarella, J.L.F. Azevedo, Advanced eddy-viscosity and Reynolds-stress turbulence model simulations of aerospace applications, AIAA Journal, 45 (10),pp. 2369-2390, 2007
http://dx.doi.org/10.2514/1.29332

S. Jakirlić, B.Eisfeld, R. Jester-Zürker, N. Kroll, Near-wall Reynolds-stress model calculations of transonic flow configurations relevant to aircraft aerodynamics, Int. Journal of Heat and Fluid Flow, 28 pp. 602-615, 2007
http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.04.001

M. Hafez and E. Wahba, Simulations of viscous transonic flows over lifting airfoils and wings, Computers & Fluids, 36, pp 39-52, 2007 .
http://dx.doi.org/10.1016/j.compfluid.2005.07.002

B.S. Baldwin, H. Lomax, Thin layer approximation and algebraic model for separated flows, AIAA Paper- 78-257, 1978.
http://dx.doi.org/10.2514/6.1978-257

P.R. Spalart, S.A. Allmaras, A one-equation turbulence model for aerodynamics flows, AIAA Paper -0439, 1993.
http://dx.doi.org/10.2514/2.809

W.P. Jones and B.E. Launder , The Prediction of laminarization with a two-equation model of turbulence, Int. Journal of Heat and Mass Transfer, 15 (2), pp. 301-314, 1972.
http://dx.doi.org/10.1016/0017-9310(72)90076-2

F.M. White, Viscous Fluid Flow (McGraw-Hill, Inc. 1991).

D.C.Wilcox, Turbulence Modeling for CF (2nd ed., DCW Industries, La Canãda, CA, 1998).
http://dx.doi.org/10.2514/3.11279

F.R. Menter and L.C. Rumesy, Assessment of two-equation turbulence models for transonic flows, AIAA Paper 94-2343, June,1994.
http://dx.doi.org/10.2514/6.1994-2343

CFD-FASTRAN, User Manuel (CFD Research Corporation, V2003).

CFD-GEOM User Manuel (CFD Research Corporation, V2003).

P.L. Roe, Approximate Riemann Solvers, Parameter vectors and difference schemes, Journal of Computational Physics, 43, pp. 357-372, 1981.
http://dx.doi.org/10.1016/0021-9991(81)90128-5

B.Van Leer, Flux-vector splitting for the Euler equations, Lecture Notes in physics, 170, pp. 507-512, 1982.
http://dx.doi.org/10.1007/3-540-11948-5_66

C.D. Harris, Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8-foot transonic pressure tunnel, NASA Technical Memorandum n. 81927, (1981).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize