Open Access Open Access  Restricted Access Subscription or Fee Access

The System of Rotor Blade Tip’s Illumination for Unmanned Aerial Vehicles


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irease.v16i3.23537

Abstract


During night flights of unmanned aerial vehicles, determining the location of the device during take-off and landing and the possibility of injury to maintenance personnel from a rotating propeller poses a certain problem. The problem is especially pronounced with a large diameter of rotor blade, which is difficult to highlight with a strobe light. The article describes the design of the rotor blade tip’s illumination system, which can be placed on propellers of any diameter without an additional battery source. This allows not only to make these lighting systems maintenance-free but also to fly in extreme conditions of low temperatures. This novelty will be especially useful when operating in the Arctic, where the polar night lasts for several months and there are very low ambient temperatures.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Brushless Direct Current Motors; Pulse-Width Modulation; Unmanned Aerial Vehicles; Rotor Blade Tip’s Illumination System; Light Emitting Diodes

Full Text:

PDF


References


Penkov, I., Aleksandrov, D., Efficiency Optimization of Mini Unmanned Multicopter, (2017) International Review of Aerospace Engineering (IREASE), 10 (5), pp. 267-276.
https://doi.org/10.15866/irease.v10i5.12132

Makeev, P., Ignatkin, Y., Shomov, A., Ivchin, V., Comparative Study of 3-Bladed and Sсissors Tail Rotors Aerodynamics in Axial Flow, (2022) International Review of Aerospace Engineering (IREASE), 15 (2), pp. 71-84.
https://doi.org/10.15866/irease.v15i2.21284

P. Andraši, T. Radišić, M. Muštra, J. Ivošević. Night-time Detection of UAVs using Thermal Infrared Camera. Transportation Research Procedia, Vol. 28, pp. 183-190. (2017).
https://doi.org/10.1016/j.trpro.2017.12.184

A. Moses, M. J. Rutherford and K. P. Valavanis, Radar-based detection and identification for miniature air vehicles. 2011 IEEE International Conference on Control Applications (CCA), 2011, pp. 933-940.
https://doi.org/10.1109/CCA.2011.6044363

Bani Younes, A., Batayneh, W., Khamis, A., Cooperative Aerial-Ground Robotic System Using Genetic Algorithm Auto-Tuned Fractional Order PID Control, (2021) International Review of Automatic Control (IREACO), 14 (6), pp. 348-359.
https://doi.org/10.15866/ireaco.v14i6.21365

Salman, S., Al Dhaheri, M., Dawson, P., Anavatti, S., Autonomous Water Sampling Payload Design, (2020) International Review of Aerospace Engineering (IREASE), 13 (3), pp. 120-125.
https://doi.org/10.15866/irease.v13i3.18374

V. Walter, N. Staub, A. Franchi and M. Saska. UVDAR System for Visual Relative Localization With Application to Leader-Follower Formations of Multirotor UAVs. IEEE Robotics and Automation Letters, Vol. 4. no. 3, pp. 2637-2644. (2019).
https://doi.org/10.1109/LRA.2019.2901683

A. Brocklehurst, G. Barakos. A review of helicopter rotor blade tip shapes. Progress in Aerospace Sciences. Vol. 56. pp. 35-74. (2013).
https://doi.org/10.1016/j.paerosci.2012.06.003

J. Wu, Y. Ma, Z. Wang, Z. Yu, Structurally coupled characteristics of rotor blade using new rigid-flexible dynamic model based on geometrically exact formulation, Chinese Journal of Aeronautics, Vol. 35, Issue 6, pp. 186-197. (2022).
https://doi.org/10.1016/j.cja.2021.08.039

G.W. Stuart, P.K. Hughes. The Effect of Rotor Tip Markings on Judgements of Rotor Sweep Extent. (Air Operations Division, DSTO Defense Science and Technology Organization, Fishermans Bend, Victoria 3207, Australia, 2010).
http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-2495.pdf

M. Landry. Rotor blade visual lights (U.S. Patent No. 7,854,590 B2). U.S. Patent and Trademark Office. (2010).

V. Carev, J. Roháč, M. Šipoš, M. Schmirler. A Multilayer Brushless DC Motor for Heavy Lift Drones. Energies, Vol. 14, 2504. (2021).
https://doi.org/10.3390/en14092504

J. Sicard, J. Sirohi. Measurement of the deformation of an extremely flexible rotor blade using digital image correlation. Measurement science and technology. Vol. 24:065203 (10pp). (2013).
https://doi.org/10.1088/0957-0233/24/6/065203

C. Zuo, J. Ma, C. Wei, T. Yue, J. Song. Deformation Measurements of Helicopter Rotor Blades Using a Photogrammetric System. Photonics. Vol. 9(7):466. (2022).
https://doi.org/10.3390/photonics9070466

Ismaiel, A., Rotor Dynamics of AWT-27 Two-Bladed Wind Turbine Under Turbulence Effect, (2022) International Review of Mechanical Engineering (IREME), 16 (7), pp. 373-378.
https://doi.org/10.15866/ireme.v16i7.22363

W. Miao, Q. Liu, Z. Xu, M. Yue, C. Li, W. Zhang, A comprehensive analysis of blade tip for vertical axis wind turbine: Aerodynamics and the tip loss effect, Energy Conversion and Management, Vol. 253, 115140. (2022).
https://doi.org/10.1016/j.enconman.2021.115140

Y. Chen et al, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry. Vol. 59, pp. 83-99. (2021).
https://doi.org/10.1016/j.jechem.2020.10.017

R. Conradt, F. Heidinger, K.P. Birke. Methodology for Determining Time-Dependent Lead Battery Failure Rates from Field Data. Batteries. Vol. 7(2):39. (2021)
https://doi.org/10.3390/batteries7020039

L. Li, S. Cao, J. Li, R. Nie, L. Hou. Review of Rotor Balancing Methods. Machines. Vol. 9(5):89. (2021)
https://doi.org/10.3390/machines9050089

Carev, V., Roháč, J., Tkachenko, S., Shpilevoy, A., Alloyarov, K., Kaychenov, A., Modernization of BLDC Motors for UAVs, (2023) International Review of Aerospace Engineering (IREASE), 16 (1), pp. 29-38.
https://doi.org/10.15866/irease.v16i1.23087

V. Carev, J. Roháč, S. Tkachenko, K. Alloyarov. The Electronic Switch of Windings of a Standard BLDC Motor. Applied Sciences. Vol. 12(21):11096. (2022).
https://doi.org/10.3390/app122111096

M.B. Shamseh, I. Yuzurihara, A. Kawamura, A 3.2 kW, 13.56 MHz, SiC Passive Rectifier with 94.0% Efficiency Using Commutation Capacitor. IEEE Transactions on Power Electronics. Vol. 31. No. 10. pp. 6787-6794. (2016).
https://doi.org/10.1109/TPEL.2016.2541683

DIODES [Diodes Incorporated]. 3.0A surface mount super-fast rectifier. ES3D Datasheet [Online], Nov. 2010.
https://pdf1.alldatasheet.com/datasheet-pdf/view/403693/DIODES/ES3D.html

COOPER [Cooper Bussmann, Inc.]. Coin Cell Supercapacitors. KR-5R5C105-R Datasheet [Online], 2008.
https://pdf1.alldatasheet.com/datasheet-pdf/view/277859/COOPER/KR-5R5C105-R.html

MOTOROLA [Motorola, Inc]. Easy Switcher 3.0A Step-Down Voltage Regulator. LM2576 Datasheet [Online], July. 1999.
https://pdf1.alldatasheet.com/datasheet-pdf/view/167370/MOTOROLA/LM2576.html

S. Somiya, Handbook of Advanced Ceramics. (Academic Press, Second Edition, 2013), 1259 p.
https://doi.org/10.1016/B978-0-12-385469-8.03001-X

K. Li, S. C. Tan, A. Ioinovici, DC-shifted harmonics boosted resonant DC/DC converter with high-step-up conversion ratio with ZVS over the full load range. Proc. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 1307-1312.
https://doi.org/10.1109/APEC.2019.8722066

E. Garcia-Rill et al, The 10 Hz Frequency: A Fulcrum For Transitional Brain States. Translational brain rhythmicity. Vol. 1. pp. 7-13. (2016). 10.15761/TBR.1000103.
https://doi.org/10.15761/TBR.1000103


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize