Open Access Open Access  Restricted Access Subscription or Fee Access

Taguchi Method for Analysing Sliding Surface Parameters of an Adaptive Terminal Sliding Mode Controller for an Articulated Robot


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irease.v16i4.23516

Abstract


The aerospace industry and space exploitation applications need a versatile articulated robot with precise movement to carry out tasks such as assembly and moving massive parts with an accurate fitting. In this study an Adaptive Terminal Sliding Mode Controller (ATSMC) is used to manage the accuracy of an articulated robot. The features of ATSMC can eliminate the need for prior knowledge of the upper limit of external disturbances and uncertainties while also preventing the chattering effect. However, this controller is sensitive to changes in parameters. As such, the Taguchi method is used to optimise the parameters of the non-linear term of the sliding surface for the ATSMC and evaluate their impact on the system performance. Based on a mathematical model of the robot and control algorithm, numerous simulations are carried out as determined by the parameter levels and constraints. Findings demonstrate that these parameters significantly affect the controller’s performance, including its response time and ability to follow the desired tracking. Additionally, the contributions of these parameters differ and show no identifiable interactions.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Adaptive Terminal Sliding Mode Controller; Articulated Robot; Non-Linear Sliding Surface; Taguchi Method

Full Text:

PDF


References


E. Papadopoulos, F. Aghili, O. Ma, and R. Lampariello, Robotic Manipulation and Capture in Space: A Survey, Frontiers in Robotics and AI, vol. 8. Frontiers Media S.A., Jul. 19, 2021.
https://doi.org/10.3389/frobt.2021.686723

Y. Dai, C. Xiang, Y. Zhang, Y. Jiang, W. Qu, and Q. Zhang, A Review of Spatial Robotic Arm Trajectory Planning, Aerospace, vol. 9, no. 7. MDPI, Jul. 01, 2022.
https://doi.org/10.3390/aerospace9070361

W. Zhang, F. Li, J. Li, and Q. Cheng, Review of On-Orbit Robotic Arm Active Debris Capture Removal Methods, Aerospace, vol. 10, no. 1. MDPI, Jan. 01, 2023.
https://doi.org/10.3390/aerospace10010013

Man Zhihong, A. P. Paplinski, and H. R. Wu, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE Trans Automat Contr, vol. 39, no. 12, pp. 2464-2469, 1994.
https://doi.org/10.1109/9.362847

C. M. Dorling and A. S. I. Zinober, Two approaches to hyperplane design in multivariable variable structure control systems, Int J Control, vol. 44, no. 1, pp. 65-82, 1986.
https://doi.org/10.1080/00207178608933583

Y. Tang, Terminal sliding mode control for rigid robots, Automatica, vol. 34, no. 1, pp. 51-56, Jan. 1998.
https://doi.org/10.1016/S0005-1098(97)00174-X

V. Utkin, Variable structure systems with sliding modes, IEEE Trans Automat Contr, vol. 22, no. 2, pp. 212-222, Apr. 1977.
https://doi.org/10.1109/TAC.1977.1101446

C. T. Lin, K. C. Liu, C. W. Chung, and Y. Chang, Design of sliding mode controller for two-link robot manipulator, in Proceedings - 1st International Conference on Robot, Vision and Signal Processing, RVSP 2011, 2011, pp. 90-93.
https://doi.org/10.1109/RVSP.2011.60

M. B. R. Neila and D. Tarak, Adaptive terminal sliding mode control for rigid robotic manipulators, International Journal of Automation and Computing, vol. 8, no. 2, pp. 215-220, May 2011.
https://doi.org/10.1007/s11633-011-0576-2

T. S. Liu and W. S. Lee, A Repetitive Learning Method Based on Sliding Mode for Robot Control, J Dyn Syst Meas Control, vol. 122, no. 1, pp. 40-48, Mar. 2000.
https://doi.org/10.1115/1.482427

A. T. Vo and H. J. Kang, An Adaptive Terminal Sliding Mode Control for Robot Manipulators with Non-Singular Terminal Sliding Surface Variables, IEEE Access, vol. 7, pp. 8701-8712, 2019.
https://doi.org/10.1109/ACCESS.2018.2886222

S. T. Venkataraman and S. Gulati, Control of Nonlinear Systems Using Terminal Sliding Modes, in 1992 American Control Conference, IEEE, Jun. 1992, pp. 891-893.
https://doi.org/10.23919/ACC.1992.4792209

X. Yu and Z. Man, Model reference adaptive control systems with terminal sliding modes, Int J Control, vol. 64, no. 6, pp. 1165-1176, Aug. 1996.
https://doi.org/10.1080/00207179608921680

X. Yu and Z. Man, Model reference adaptive control systems with terminal sliding modes, Int J Control, vol. 64, no. 6, pp. 1165-1176, 1996.
https://doi.org/10.1080/00207179608921680

S. T. Venkataraman and S. Gulati, Control of Nonlinear Systems Using Terminal Sliding Modes, J Dyn Syst Meas Control, vol. 115, no. 3, pp. 554-560, Sep. 1993.
https://doi.org/10.1115/1.2899138

X. Yu, Y. Feng, and Z. Man, Terminal Sliding Mode Control - An Overview, IEEE Open Journal of the Industrial Electronics Society, vol. 2, pp. 36-52, 2021.
https://doi.org/10.1109/OJIES.2020.3040412

Yong Feng, Xinghuo Yu, Zhihong Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, Volume 38, Issue 12, 2002, Pages 2159-2167.
https://doi.org/10.1016/S0005-1098(02)00147-4

T. H. S. Li and Y. C. Huang, MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators, Inf Sci (N Y), vol. 180, no. 23, pp. 4641-4660, Dec. 2010.
https://doi.org/10.1016/j.ins.2010.08.009

X. T. Tran and H. J. Kang, Adaptive hybrid High-Order terminal sliding mode control of MIMO uncertain nonlinear systems and its application to robot manipulators, International Journal of Precision Engineering and Manufacturing, vol. 16, no. 2, pp. 255-266, Feb. 2015.
https://doi.org/10.1007/s12541-015-0034-0

Khouane, B., Han, C., Zhu, Y., Yadegari, H., Observer-Based Terminal Sliding Mode Control for Attitude Stabilization of Flexible Spacecraft with Fuel Slosh, (2017) International Review of Automatic Control (IREACO), 10 (4), pp. 316-324.
https://doi.org/10.15866/ireaco.v10i4.11533

S. M. Hashem Zadeh, S. Khorashadizadeh, M. M. Fateh, and M. Hadadzarif, Optimal sliding mode control of a robot manipulator under uncertainty using PSO, Nonlinear Dyn, vol. 84, no. 4, pp. 2227-2239, Jun. 2016.
https://doi.org/10.1007/s11071-016-2641-4

B. Zhang, X. Yang, D. Zhao, S. K. Spurgeon, and X. Yan, Sliding Mode Control for Nonlinear Manipulator Systems, in IFAC-PapersOnLine, Elsevier B.V., Jul. 2017, pp. 5127-5132.
https://doi.org/10.1016/j.ifacol.2017.08.781

Hameed, A., Al-Dujaili, A., Humaidi, A., Hussein, H., Design of Terminal Sliding Position Control for Electronic Throttle Valve System: a Performance Comparative Study, (2019) International Review of Automatic Control (IREACO), 12 (5), pp. 251-260.
https://doi.org/10.15866/ireaco.v12i5.16556

Y. Su, C. Zheng, and P. Mercorelli, Robust approximate fixed-time tracking control for uncertain robot manipulators, Mech Syst Signal Process, vol. 135, Jan. 2020.
https://doi.org/10.1016/j.ymssp.2019.106379

A. Jouila and K. Nouri, An adaptive robust nonsingular fast terminal sliding mode controller based on wavelet neural network for a 2-DOF robotic arm, J Franklin Inst, vol. 357, no. 18, pp. 13259-13282, Dec. 2020.
https://doi.org/10.1016/j.jfranklin.2020.04.038

R. Fessi, H. Rezk, and S. Bouallègue, Grey Wolf optimization based tuning of terminal sliding mode controllers for a quadrotor, Computers, Materials and Continua, vol. 68, no. 2, pp. 2265-2282, Apr. 2021.
https://doi.org/10.32604/cmc.2021.017237

Y. Wang, M. Chen, and Y. Song, Terminal Sliding-Mode Control of Uncertain Robotic Manipulator System with Predefined Convergence Time, Complexity, vol. 2021, pp. 1-16, Jun. 2021.
https://doi.org/10.1155/2021/9991989

Y. Zhu, D. Wu, and S. Li, Non-singular Fast Terminal Sliding Mode Tracking Control of a 2-DOF Robotic Manipulator Using Finite-Time Extended State Observer, in Proceedings of the 33rd Chinese Control and Decision Conference, CCDC 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 4713-4718.
https://doi.org/10.1109/CCDC52312.2021.9601551

Tuan HM, Sanfilippo F, Hao NV. A Novel Adaptive Sliding Mode Controller for a 2-DOF Elastic Robotic Arm. Robotics. 2022; 11(2):47.
https://doi.org/10.3390/robotics11020047

K. Guo, P. Shi, P. Wang, C. He, and H. Zhang, Non-Singular Terminal Sliding Mode Controller with Nonlinear Disturbance Observer for Robotic Manipulator, Electronics (Switzerland), vol. 12, no. 4, Feb. 2023.
https://doi.org/10.3390/electronics12040849

D. S. Khazaal, H. M. H. Al-Khafaji, and I. A. Abdulsahib, Holes' Parameters Analysis of a Perforated Thin-Walled Lipped Beam Buckled Under a Bending Load, International Journal of Automotive and Mechanical Engineering, vol. 18, no. 3, pp. 8927-8940, Sep. 2021.
https://doi.org/10.15282/ijame.18.3.2021.07.0684

Al-Khafaji, H., Swadi, N., Hadi, A., Optimizing the Modified Whitworth Quick Return Mechanism Using Taguchi and ANOVA Methods, (2022) International Review of Mechanical Engineering (IREME), 16 (3), pp. 118-129.
https://doi.org/10.15866/ireme.v16i3.21936

Kiha Lee, Jongwon Kim, Controller gain tuning of a simultaneous multi-axis PID control system using the Taguchi method, Control Engineering Practice, Volume 8, Issue 8, 2000, Pages 949-958,
https://doi.org/10.1016/S0967-0661(99)00201-4

M. Santhakumar and T. Asokan, A Self-Tuning Proportional-Integral-Derivative Controller for an Autonomous Underwater Vehicle, Based On Taguchi Method, Journal of Computer Science, vol. 6, no. 8, pp. 862-871, 2010.
https://doi.org/10.3844/jcssp.2010.862.871

X. M. Dong, M. Yu, and C. R. Liao, Fuzzy sliding mode control based on hybrid Taguchi genetic algorithm for magneto-rheological suspension system, in Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications Ltd, 2011, pp. 735-746.
https://doi.org/10.1177/2041299110394917

G. Dewantoro, Robust fine-tuned PID controller using Taguchi method for regulating DC motor speed, in 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE, Oct. 2015, pp. 173-178.
https://doi.org/10.1109/ICITEED.2015.7408936

S. Norouzi and A. Akbarzadeh, Fractional Order PID Design using the Taguchi Method, International Journal of Robotics and Automation (IJRA), vol. 4, no. 3, pp. 176-185, 2015.
https://doi.org/10.11591/ijra.v4i3.pp176-185

C. Tsung Heng, Z. Jamaludin, A. Yusairi Bani Hashim, N. Aidawaty Rafan, and L. Abdullah, Optimization of super twisting sliding mode control gains using taguchi method, Industrial Engineering and Management Systems, vol. 17, no. 1, pp. 62-71, Mar. 2018.
https://doi.org/10.7232/iems.2018.17.1.062

C.-T. Lee, B.-R. Su, C.-H. Chang, T.-Y. Hsu, and W.-D. Lee, Applications of Taguchi method to PID control for path tracking of a wheeled mobile robot, in 2018 IEEE International Conference on Applied System Invention (ICASI), IEEE, Apr. 2018, pp. 453-456.
https://doi.org/10.1109/ICASI.2018.8394283

P. Sonawane, V. B. Savakhande, M. A. Chewale, and R. A. Wanjari, Optimization of PID controller for Automatic voltage regulator system using Taguchi method, in 2018 International Conference on Computer Communication and Informatics (ICCCI), IEEE, Jan. 2018, pp. 1-6.
https://doi.org/10.1109/ICCCI.2018.8441211

M. Zhihong and X. Yu, Adaptive Terminal Sliding Mode Tracking Control for Rigid Robotic Manipulators with Uncertain Dynamics., JSME International Journal Series C, vol. 40, no. 3, pp. 493-502, 1997.
https://doi.org/10.1299/jsmec.40.493

W. M. Grimm, Robot non-linearity bounds evaluation techniques for robust control, Int J Adapt Control Signal Process, vol. 4, no. 6, pp. 501-522, Nov. 1990.
https://doi.org/10.1002/acs.4480040608

Man Zhihong and M. Palaniswami, Robust tracking control for rigid robotic manipulators, IEEE Trans Automat Contr, vol. 39, no. 1, pp. 154-159, 1994.
https://doi.org/10.1109/9.273355

S. H. Han, M. S. Tran, and D. T. Tran, Adaptive sliding mode control for a robotic manipulator with unknown friction and unknown control direction, Applied Sciences (Switzerland), vol. 11, no. 9, 2021.
https://doi.org/10.3390/app11093919

J.-J. E. (Jean-J. E. ) Slotine and W. Li, Applied nonlinear control. Prentice Hall, 1991.

G. Taguchi and R. Jugulum, The Mahalanobis-Taguchi Strategy: A Pattern Technology System., Technology (Singap World Sci), pp. 1-235, 2002.
https://doi.org/10.1002/9780470172247

Man Zhihong and Xing Huo Yu, Terminal sliding mode control of MIMO linear systems, in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 11, pp. 1065-1070, Nov. 1997.
https://doi.org/10.1109/81.641769

Traoré, B., Doumiati, M., Olivier, J., Morel, C., Adaptive Power Sharing Algorithm Combined with Robust Control for a Multi-Source Electric Vehicle: Experimental Validation, (2022) International Review of Electrical Engineering (IREE), 17 (1), pp. 39-53.
https://doi.org/10.15866/iree.v17i1.21269

Gatto G., Marongiu I., Meo S., Perfetto A., Serpi A., Predictive control of brushless DC motor drive providing minimum joule losses and torque ripple free commutation, (2011) International Review on Modelling and Simulations (IREMOS), 4 (4), pp. 1500-1505.

Rached, B., Elharoussi, M., Abdelmounim, E., DSP in the Loop Implementation of Sliding Mode and Super Twisting Sliding Mode Controllers Combined with an Extended Kalman Observer for Wind Energy System Involving a DFIG, (2020) International Journal on Energy Conversion (IRECON), 8 (1), pp. 26-37.
https://doi.org/10.15866/irecon.v8i1.18432


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize