Open Access Open Access  Restricted Access Subscription or Fee Access

Replacement of In-Orbit Modern Spacecraft Attitude Determination and Estimation Algorithms with Neural Networks

Tamer Mekky Habib(1*)

(1) Spacecraft Dynamics and Control Department Acting Head, Space Division, National Authority for Remote Sensing and Space Sciences, Egypt
(*) Corresponding author


DOI: https://doi.org/10.15866/irease.v14i3.19687

Abstract


In-orbit spacecraft attitude determination or estimation algorithms are considered to be of utmost importance and criticality. In the current research article, several In-Orbit attitude determinations and estimation algorithms are reviewed. These algorithms are TRIAD, Q-method, and Extended Kalman Filter (EKF). Three analogous algorithms are developed based on Cascade-Forward Neural Networks (CFNN) in order to replace these traditional in-orbit estimation and determination algorithms. In order to prove the concept, the former Egyptian spacecraft EGYPTSAT-1 is utilized as a test case. The objective of the developed CFNNs is to mimic the performance of the presented attitude determination and estimation algorithms. The performance of the proposed CFNNs is evaluated. The proposed CFNN algorithms have the same accuracy level of TRIAD, Q-method, and EKF. The maximum error achieved has been ±0.1° with an average execution time about half of the average execution time of EKF. The proposed CFNN are proven to be generic and could replace any determination or estimation algorithm within the same accuracy levels. The computational load of CFNN is independent of the complexity level of the attitude determination or estimation algorithm that it tries to mimic. This enables the usage of more elaborated models to increase the accuracy within the same computational load.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Attitude Determination; Cascade-Forward; Estimation; Neural Networks

Full Text:

PDF


References


Shouman, M., El Bayoumi, G., Adaptive Robust Control of Satellite Attitude System, (2015) International Review of Aerospace Engineering (IREASE), 8 (1), pp. 35-42.
https://doi.org/10.15866/irease.v8i1.5322

Omar, H., Developing Geno-Fuzzy Controller for Satellite Stabilization with Gravity Gradient, (2014) International Review of Aerospace Engineering (IREASE), 7 (1), pp. 8-16.
https://doi.org/10.15866/irease.v7i1.1337

Habib, T., Nonlinear Spacecraft Attitude Control via Cascade-Forward Neural Networks, (2020) International Review of Automatic Control (IREACO), 13 (3), pp. 146-152.
https://doi.org/10.15866/ireaco.v13i3.19149

Zhou, K., et al, Magnetic Attitude Control for Earth-Pointing Satellites in the Presence of Gravity Gradient, Aerospace Science and Technology, 60, (2017), 115-123.
https://doi.org/10.1016/j.ast.2016.11.003

Salleh, M., Mohd Suhadis, N., Satellite Attitude Performance of CMG-Based Controlled Small Satellite During Gimbal Angle Compensation, (2015) International Review of Aerospace Engineering (IREASE), 8 (2), pp. 81-85.
https://doi.org/10.15866/irease.v8i2.6215

Benzeniar, H., Fellah, M., A Microsatellite Reaction Wheel Based on a Fuzzy Logic Controller for the Attitude Control System, (2014) International Review of Aerospace Engineering (IREASE), 7 (5), pp. 171-176.
https://doi.org/10.15866/irease.v7i5.4973

Habib, T., Spacecraft Nonlinear Attitude Dynamics Control with Adaptive Neuro-Fuzzy Inference System, (2019) International Review of Automatic Control (IREACO), 12 (5), pp. 242-250.
https://doi.org/10.15866/ireaco.v12i5.18056

Sidi, M. J., Spacecraft Dynamics and Control, a Practical Engineering Approach. (Cambridge University Press, 1997).

Khorchef, N., Mokhtari, A., Boudjemai, A., Multi-Scenarios Attitude Control of a Satellite with Flexible Solar Panels, (2018) International Review of Automatic Control (IREACO), 11 (6), pp. 326-335.
https://doi.org/10.15866/ireaco.v11i6.15266

Bouallegue, S., Khoud, K., Integral Backstepping Control Prototyping for a Quad Tilt Wing Unmanned Aerial Vehicle, (2016) International Review of Aerospace Engineering (IREASE), 9 (5), pp. 152-161.
https://doi.org/10.15866/irease.v9i5.10476

Deif, T., Kassem, A., El Baioumi, G., Modeling, Robustness, and Attitude Stabilization of Indoor Quad Rotor Using Fuzzy Logic Control, (2014) International Review of Aerospace Engineering (IREASE), 7 (6), pp. 192-201.
https://doi.org/10.15866/irease.v7i6.4306

Tran, K., Modified GA Tuning IPD Control for a Single Tilt Tri-Rotors UAV, (2018) International Review of Aerospace Engineering (IREASE), 11 (1), pp. 1-5.
https://doi.org/10.15866/irease.v11i1.12807

Kramar, V., Alchakov, V., Kabanov, A., Dudnikov, S., Dmitriev, A., The Design of Optimal Lateral Motion Control of an UAV Using the Linear-Quadratic Optimization Method in the Complex Domain, (2020) International Review of Aerospace Engineering (IREASE), 13 (6), pp. 217-227.
https://doi.org/10.15866/irease.v13i6.19130

Kassem, A., El-Bayoumi, G., Habib, T., Kamalaldin, K., Improving Satellite Orbit Estimation Using Commercial Cameras, (2015) International Review of Aerospace Engineering (IREASE), 8 (5), pp. 174-178.
https://doi.org/10.15866/irease.v8i5.8279

Habib, T., In-Orbit Spacecraft Inertia, Attitude, and Orbit Estimation Based on Measurements of Magnetometer, Gyro, Star Sensor and GPS Through Extended Kalman Filter, (2018) International Review of Aerospace Engineering (IREASE), 11 (6), pp. 247-251.
https://doi.org/10.15866/irease.v11i6.14839

Habib T., New algorithms of nonlinear spacecraft attitude control via attitude, angular velocity, and orbit estimation based on the earth’s magnetic field, PhD Thesis, Cairo University, 2009.

Habib T., A comparative study of spacecraft attitude determination and estimation algorithms (a cost–benefit approach), Aerospace Science and Technology, (26), (2013), 211-215.
https://doi.org/10.1016/j.ast.2012.04.005

Benzerrouk, H., Salhi, H., Nebylov, A., Non-Gaussian Sensor Fusion Analysis with “Gaussian Mixture and Adaptive” Based Cubature Kalman Filtering for Unmanned Aerial Vehicle, (2013) International Review of Aerospace Engineering (IREASE), 6 (6), pp. 264-277.
https://doi.org/10.4236/jst.2013.34018

Grillo, C., Montano, F., An EKF Based Method for Path Following in Turbulent Air, (2017) International Review of Aerospace Engineering (IREASE), 10 (1), pp. 1-6.
https://doi.org/10.15866/irease.v10i1.10501

Faizullin, D., Hiraki, K., Cho, M., Estimating Sun Vector Based on Limited In-Orbit Data, (2019) International Review of Aerospace Engineering (IREASE), 12 (2), pp. 101-108.
https://doi.org/10.15866/irease.v12i2.16189

Habib T., Simultaneous spacecraft orbit estimation and control based on GPS measurements via extended Kalman filter, The Egyptian Journal of Remote Sensing and Space Sciences, Vol.16, Issue 1, (2013), 11-16.
https://doi.org/10.1016/j.ejrs.2012.11.002

Ma, H., Xu, S., Magnetometer-only Attitude and Angular Velocity Filtering Estimation for Attitude Changing Spacecraft, Acta Astronautica, 102, (2014), 89-102.
https://doi.org/10.1016/j.actaastro.2014.05.002

Wertz, J. R., Spacecraft Attitude Determination and Control. (D. Reidel Publishing Company, 1997).

Habib T., Fast Converging with High Accuracy Estimates of Satellite Attitude and Orbit Based on Magnetometer Augmented with Gyro, Star Sensor and GPS via Extended Kalman Filter, The Egyptian Journal of Remote Sensing and Space Sciences, Vol.14, Issue 2, (2011), 57-61.
https://doi.org/10.1016/j.ejrs.2011.06.002

Xu, Z., Qi, N., Chen, Y., Parameter Estimation of a Three-Axis Spacecraft Simulator Using Recursive Least-Squares Approach with Tracking Differentiator and Extended Kalman Filter, Acta Astronautica, 117, (2015), 254-262.
https://doi.org/10.1016/j.actaastro.2015.08.010

Ma, C., Dai, H., Yuan, J., Estimation of Inertial Characteristics of Tumbling Spacecraft Using Constant State Filter, Advances in Space Research, (2017).
https://doi.org/10.1016/j.asr.2017.03.032

Guler, D., Conguroglu, E., Hajiyev, C., Single-Frame Attitude Determination Methods for Nano Satellites, Metrol. Meas. Syst., Vol.24, No.2, (2017), 313-324.
https://doi.org/10.1515/mms-2017-0023

Hajiyev, C., Cilden D., Somov, Y., Gyro-free Attitude and Rate Estimation for a Small Satellite using SVD and EKF, Aerospace Science and Technology, (55), (2016), 324-331.
https://doi.org/10.1016/j.ast.2016.06.004

Grillo, C., Montano, F., Automatic EKF Tuning for UAS Path Following in Turbulent Air, (2018) International Review of Aerospace Engineering (IREASE), 11 (6), pp. 241-246.
https://doi.org/10.15866/irease.v11i6.15122

Hajiyev, C., Cilden D., Hacizade, U., Two Stage Kalman Filter for Fault Taulerent Estimation of Wind Sped and UAV Flight Parameters, Measurement Science Review, 20 (1), (2020), 35-42.
https://doi.org/10.2478/msr-2020-0005

Guler, D., et al., Nanosatellite Attitude Estimation Using Kalman-type Filters with non-Gaussian noise, Aerospace Science and Technology, (92), (2019), 66-76.
https://doi.org/10.1016/j.ast.2019.05.055

Guler, D., Hajiyev, C., SVD-aided EKF Attitude Estimation with UD Factorized Measurement Noise Covariance, Asian. J. Control., (21), No.2, (2019), 1423-1432.
https://doi.org/10.1002/asjc.1979

Psiaki, M., Estimation of a Spacecraft’s Attitude Dynamics Parameters by Using Flight Data, Journal of Guidance Control and Dynamics, Vol.28, No.4, (2005), 594-603.
https://doi.org/10.2514/1.7362

Ferguson, P., On-Orbit Spacecraft Inertia and Rate Sensor Scale Factor Estimation for Microsatellites, 22nd Annual AIAA/USU Conference on Small, (2007).

Chu, Z., et al, Inertial Parameter Identification Using Contact Force Information for an Unknown Object Captured by a Space Manipulator, Acta Astronautica, 131, (2017), 69-82.
https://doi.org/10.1016/j.actaastro.2016.11.019

Chashmi, S., Malaek, S., Fast Estimation of Space-Robots Inertia Parameters: A Modular Mathematical Formulation, Acta Astronautica, 127, (2016), 283-295.
https://doi.org/10.1016/j.actaastro.2016.04.037

Suykens, J., Vandewalle, J., and Moor, B., Artificial Neural Networks for Modelling and Control of Non-Linear Systems. (SPRINGER-SCIENCE+BUSINESS MEDIA, B.V., 1996).
https://doi.org/10.1007/978-1-4757-2493-6

Hagan, M.., Dcmuth, H., and Beale, M., Neural Network Design. (PWS Publishing Company, 1996).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2021 Praise Worthy Prize