Open Access Open Access  Restricted Access Subscription or Fee Access

Numerical Validation of NACA 0009 Airfoil in Ultra-Low Reynolds Number Flows


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irease.v12i2.16013

Abstract


Validation of the sectional airfoil performance is necessary to test a propeller. This study presents a numerical validation of the computational fluid dynamics (CFD) method for testing a symmetric NACA airfoil called NACA 0009. An ultra-low Reynolds number of 20000 is assumed and investigated. The implementation is performed using a commercial CFD solver ANSYS Fluent. The obtained results are compared with experimental data obtained from literature. A coarse grid is adopted as meshing technique and a realizable k-ε turbulence model, which has provided the best results, is assumed. Results show favourable prediction for most of the considered angles of attack. Thus, an overall reliable model has been developed.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Validation; NACA Airfoil; Ultra-Low Reynolds Number; CFD Simulation

Full Text:

PDF


References


Wikipedia, Propeller, online, 2018. [Online]. Available: https://en.wikipedia.org/wiki/Propeller

X. Liu and W. He, Performance Calculation and Design of Stratospheric Propeller, Spec. Sect. Adv. Control Heal. Manag. Aircr. ITS Propuls. Syst., vol. 5, pp. 14358–14368, 2017.
https://doi.org/10.1109/access.2017.2725303

H. Yang, W. Shen, H. Xu, Z. Hong, and C. Liu, Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD, Renew. Energy, vol. 70, pp. 107–115, 2014.
https://doi.org/10.1016/j.renene.2014.05.002

A. A. Huq et al., Numerical Prediction of Aerofoil Aerodynamics at Low Reynolds number for MAV Application, Bangalore, 2009.

H. Seeni, A., Rajendran, P, Kutty, A Critical Review on Tubercles Design for Propellers, IOP Conf. Ser. Mater. Sci. Eng., vol. 370, no. 012015, 2018.
https://doi.org/10.1088/1757-899x/370/1/012015

H. Seeni, A, Rajendran, P, Kutty, A Critical Review on Slotted Design for Propellers, IOP Conf. Ser. Mater. Sci. Eng., vol. 370, no. 012023, 2018.
https://doi.org/10.1088/1757-899x/370/1/012023

S. M. A. Aftab and K. A. Ahmad, CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading, PLoS One, vol. 12, no. 8, pp. 1–27, 2017.
https://doi.org/10.1371/journal.pone.0183456

K. Nordanger, R. Holdahl, A. Morten, and A. Rasheed, Implementation and comparison of three isogeometric Navier – Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number, Comput. Methods Appl. Mech. Engrg., vol. 284, pp. 664–688, 2015.
https://doi.org/10.1016/j.cma.2014.10.033

K. Nordanger, R. Holdahl, T. Kvamsdal, and A. Morten, Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier – Stokes solver with the Spalart – Allmaras turbulence model, Comput. Methods Appl. Mech. Engrg., vol. 290, pp. 183–208, 2015.
https://doi.org/10.1016/j.cma.2015.02.030

K. Kuwahara and S. Komurasaki, Direct Simulation of a Flow around an Airfoil, in Proceedings of the 14th Symposium of Numerical Fluid Dynamics, JSCFD, 2000, pp. 1–7.

P. S. Kapsalis, S. Voutsinas, and N. S. Vlachos, Comparing the effect of three transition models on the CFD predictions of a NACA0012 airfoil aerodynamics, Jnl. Wind Eng. Ind. Aerodyn., vol. 157, pp. 158–170, 2016.
https://doi.org/10.1016/j.jweia.2016.07.007

V. Durgesh, E. Garcia, and H. Johari, Experimental Study of NACA Symmetric and Camber Airfoils at Low Reynolds Numbers, in AIAA SciTech Forum, 55th AIAA Aerospace Sciences Meeting, 2017, no. January, pp. 1–9.
https://doi.org/10.2514/6.2017-0771

M. S. Selig, M. S. Donovan, and Fraser, Airfoils at low speeds. Virginia Beach, Virginia, USA: H.A. Stokely, 1989.

M. Selig, J. J. Guglielmo, A. P. Broeren, and P. Giguere, Summary of Low-Speed Airfoil Data, SoarTech Publications, Virginia Beach, VA, 1995.

M. S. Selig, C. A. Lyon, P. Giguere, C. P. Ninham, and J. J. Guglielmo, Summary of Low-Speed Airfoil Data, Virginia Beach, VA, 1996.

C. A. Lyon, A. P. Broeren, P. Gigu, A. Gopalarathnam, and M. S. Selig, Summary of Low-Speed Airfoil Data, SoarTech Publications, Virginia Beach, Virginia, 1997.

G. A. Williamson, B. D. Mcgranahan, B. A. Broughton, R. W. Deters, J. B. Brandt, and M. S. Selig, Summary of Low-Speed Airfoil Data, Urbana-Champaign, 2012.

L. Li, Experimental Testing of Low Reynolds Number Airfoils for Unmanned Aerial Vehicles, University of Toronto, 2013.

Z. Liu, L. Dong, J. Moschetta, and J. Zhao, Optimization of Nano-Rotor Blade Airfoil Using Controlled Elitist NSGA-II, Int. J. Micro Air Veh., vol. 6, no. 1, pp. 29–42, 2014.
https://doi.org/10.1260/1756-8293.6.1.29

X. Li, D. Grecov, Z. Guo, and Z. Hou, Influence of Unsteady and Kinematic Parameters on Aerodynamic Characteristics of a Pitching Airfoil, J. Aerosp. Eng., vol. 32, no. 1, 2019.
https://doi.org/10.1061/(asce)as.1943-5525.0000944

M. Jafari, A. Razavi, and M. Mirhosseini, Effect of Steady and Quasi-Unsteady Wind on Aerodynamic Performance of H-Rotor Vertical Axis Wind Turbines, J. Energy Eng., vol. 144, no. 6, 2018.
https://doi.org/10.1061/(asce)ey.1943-7897.0000578

H. Cao, X. Wu, H. Ye, S. Hu, L. Lu, J. Peng, Optimization Research on Lift-Type Vertical Axis Wind Turbine Airfoil by CFD, Journal of Physics: Conference Series, 2018, v. 1064, n. 1.
https://doi.org/10.1088/1742-6596/1064/1/012072

G. Mallela, P. Paturu, and M. Komaleswarao, Lift and drag performance of NACA0012 airfoil at various angle of attack using CFD, Int. J. Mech. Prod. Eng. Res. Dev., vol. 8, no. 3, pp. 89–100, 2018.
https://doi.org/10.24247/ijmperdjun201810

A. Sadikin et al., A comparative study of turbulence models on aerodynamics characteristics of a NACA0012 airfoil, Int. J. Integr. Eng., vol. 10, no. 1, pp. 134–137, 2018.

S. Rasekh, M. Hosseini Doust, and S. Karimian Aliabadi, Accuracy of dynamic stall response for wind turbine airfoils based on semi-empirical and numerical methods, J. Appl. Fluid Mech., vol. 11, no. 5, pp. 1287–1296, 2018.
https://doi.org/10.29252/jafm.11.05.28668

P. I. Muiruri and O. S. Motsamai, Three dimensional CFD simulations of a wind turbine blade section; validation, J. Eng. Sci. Technol. Rev., vol. 11, no. 1, pp. 138–145, 2018.

I. Hashem and M. H. Mohamed, Aerodynamic performance enhancements of H-rotor Darrieus wind turbine, Energy, vol. 142, pp. 531–545, 2018.
https://doi.org/10.1016/j.energy.2017.10.036

N. Deng, Q. Qu, and R. K. Agarwal, Numerical study of the aerodynamics of rectangular multi-element wing in ground effect, in 2018 Applied Aerodynamics Conference, 2018.
https://doi.org/10.2514/6.2018-4115

H. Sogukpinar and I. Bozkurt, Implementation of different turbulence model to find proper model to estimate aerodynamic properties of airfoils, in AIP Conference Proceedings, 2018, vol. 1935.
https://doi.org/10.1063/1.5025957

H. Sogukpinar and I. Bozkurt, Numerical calculation of aerodynamics wind turbine blade S809 airfoil and comparison of theoretical calculations with experimental measurements and confirming with NREL data, in AIP Conference Proceedings, 2018, vol. 1935.
https://doi.org/10.1063/1.5025958

M. Sanei and R. Razaghi, Numerical investigation of three turbulence simulation models for S809 wind turbine airfoil, Proc. Inst. Mech. Eng. Part A J. Power Energy, 2018.
https://doi.org/10.1177/0957650918767301

B. S. Anil Kumar, Ramalingaiah, S. Manjunath, and R. Ganganna, Computational Investigation of Flow Separation over NACA 23024 Airfoil at 6 Million Free Stream Reynolds Number Using k-Epsilon Turbulence Model, in Materials Today: Proceedings, 2018, vol. 5, no. 5, pp. 12632–12640.
https://doi.org/10.1016/j.matpr.2018.02.246

Z. Ni, T.-C. Su, and M. Dhanak, An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles, AIP Adv., vol. 8, no. 4, 2018.
https://doi.org/10.1063/1.5023103

S. Beyhaghi and R. S. Amano, A parametric study on leading-edge slots used on wind turbine airfoils at various angles of attack, J. Wind Eng. Ind. Aerodyn., vol. 175, pp. 43–52, 2018.
https://doi.org/10.1016/j.jweia.2018.01.007

V. Patel et al., Analysis of S-4180 using computational fluid dynamics, in International Conference on Advances in Computing, Communication and Control 2017, ICAC3 2017, 2018, vol. 2018–Janua, pp. 1–4.
https://doi.org/10.1109/icac3.2017.8318776

M. Alam, Y. Zhou, H. Yang, and J. Guo, H Mi, The ultra-low Reynolds number airfoil, Exp. Fluids, vol. 48, no. 1, pp. 81–103, 2010.
https://doi.org/10.1007/s00348-009-0713-7

J. Selig, MS, Guglielmo, High lift low Reynolds Number Airfoil Design, J. Aircr., vol. 34, no. 1, 1997.

W. Y, T. G, W. Z, and W. Z, Numerical Simulation of a Low Reynolds Number Airfoil, Appl. Mech. Mater., vol. 390, pp. 141–146, 2013.

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269–289, 1974.

[ANSYS, ANSYS FLUENT User’s Guide, no. January. ANSYS Inc., Canonsburd, PA, p. 734, 2015.

D. C. Wilcox, Turbulence Modelling for CFD, 2nd editio. La Canada, California: DCW Industries, Inc., 1994.

D. C. Wilcox, Formulation of the k-w Turbulence Model Revisited, AIAA J., vol. 46, no. 11, pp. 2823–2838, 2008.
https://doi.org/10.2514/1.36541

F. Menter, Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows, in 24th Fluid Dynamics Conference, 1993.
https://doi.org/10.2514/6.1993-2906

Airfoiltools.com, NACA-0009 9.0% smoothed (n0009sm-il), online, 2018.

H. Kutty and P. Rajendran, 3D CFD Simulation and Experimental Validation of Small APC Slow Flyer Propeller Blade, Aerospace, vol. 4, no. 1, p. 10, 2017.
https://doi.org/10.3390/aerospace4010010

F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994.
https://doi.org/10.2514/3.12149

S. Spalart, Philippe R. Allmaras, A one equation turbulence model for aerodynamic flows, La Rech. Aerosp., vol. 1, pp. 5–21, 1994.

Salim, W., Ahmed, S., Prediction of Turbulent Swirling Flow in a Combustor Model, (2016) International Review of Aerospace Engineering (IREASE), 9 (2), pp. 43-50.
https://doi.org/10.15866/irease.v9i2.9562

Frosina, E., Buono, D., Senatore, A., Costin, I., A Simulation Methodology Applied on Hydraulic Valves for High Fluxes, (2016) International Review on Modelling and Simulations (IREMOS), 9 (3), pp. 217-226.
https://doi.org/10.15866/iremos.v9i3.9612

Benbih, H., Gueraoui, K., Bensalah, H., Rtibi, A., Belkasmi, Y., Zeggwagh, G., Mathematical and Numerical Modeling of the Suspension of Particles Due to the Air Flow Between Two Rigid Walls, (2018) International Review of Civil Engineering (IRECE), 9 (1), pp. 50-56.
https://doi.org/10.15866/irece.v9i1.14286


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize