Open Access Open Access  Restricted Access Subscription or Fee Access

Dynamic Modeling and Flight Control Design for Multicopter

(*) Corresponding author

Authors' affiliations



This paper presents a step by step dynamic modeling of the multicopter – quadcopter based on Newton Euler formalism, including the dynamics of the motor and the propellers. The linearization of the nonlinear mathematical model of the quadrotor is derived systematically when ψ ≠ 0. Consequently, the simulation model of the flight controller based on the cascade control has been designed, which ensures a stabilization of the quad rotor and a robust-like trajectory tracking performance. The proposed cascade control strategy including the outer inverse dynamics provides controlling of the yaw orientation angle. The comparison of the use of a linear cascade PID-PD and the combination of PID-MPC is performed on 3D referent trajectories tracking with and without the presence of periodic external torque disturbances. The results are obtained from the MATLAB simulation model.
Copyright © 2018 Praise Worthy Prize - All rights reserved.


Quadrotor Dynamics; Control System Design; Flight Controller; Trajectory Tracking

Full Text:



S. Bouabdallah, A. Noth, and R. Siegwart, Pid vs LQ control techniques applied to an indoor micro quadrotor, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2451–2456 (2004).

G. Cai, B. M. Chen, and T. H. Lee, Unmanned rotorcraft systems (Springer, 2011).

R. Goel, S. M. Shah, N. K. Gupta, and N. Ananthkrishnan, Modeling, simulation and flight testing of an autonomous quadrotor, Proceedings of ICEAE, pp. 1–7 (2009).

T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, Dynamic modeling and configuration stabilization for an x4-flyer, IFAC Proceedings Volumes, vol. 35 (1) (2002), 217–222.

Y. Bi, M. Lan, J. Li, K. Zhang, H. Qin, Sh. Lai, and B. M. Chen. Robust autonomous flight and mission management for MAVs in GPS-denied environments, IEEE Asian Control Conference (ASCC), pp. 67-72 (2017).

S. K. Phang, S. Lai, F. Wang, M. Lan, and B. M. Chen, Uav calligraphy, IEEE International Conference Control & Automation (ICCA), pp. 422–428 (2014).

S. K. Phang, K. Li, K. H. Yu, B. M. Chen, and T. H. Lee, Systematic design and implementation of a micro unmanned quadrotor system, Unmanned Systems, vol. 2 (2) (2014), 121–141.

Q. Quan, Introduction to multicopter design and control (Springer, 2017).

B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and simulation: dynamics, controls design, and autonomous systems (John Wiley & Sons, 2015).

X. Zhang, B. Xian, B. Zhao, Y. Zhang, Autonomous Flight Control of a Nano Quadrotor Helicopter in a GPS-Denied Environment Using On-Board Vision. IEEE Transactions on Industrial Electronics. vol. 62 (2015), 6392–6403.

D. Bunjaku, J. Stefanovski, and M. Stankovski, Dynamic modeling and asymptotic point stabilization control of two differential wheeled mobile robot, Journal of Electrical Engineering and Information Technologies - JEEIT, vol. 1(1-2) (2017), 25–35,

D. Bunjaku, and M. Stankovski, The system identification in industrial control: Case study on the differential wheeled mobile robot, IEEE International Conference Control & Automation (ICCA), pp. 94-99 (2017).

K. Wang, Y. Ke, and B. M. Chen, Development of autonomous hybrid UAV U-Lion with VTOL and cruise flying capabilities, IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1053-1060 (2016).

Dief, T., Kamra, M., Yoshida, S., Modeling, System Identification and PID-A Controller for Tethered Unmanned Quad-Rotor Helicopter, (2017) International Review of Aerospace Engineering (IREASE), 10 (4), pp. 215-223.

S. Deskovski, V. Sazdovski, and Z. Gacovski, Guidance Laws and Navigation Systems for Quadrotor UAV: Theoretical and Practical Findings, In Complex Systems, (Springer, Cham, 2016, pp. 395-407).

J. C. V. Junior, J. C. De Paula, G. V. Leandro, and M. C. Bonfim, Stability control of a quad-rotor using a PID controller, Journal of Applied Instrumentation and Control 1(1) (2013), 15-20.

O. Araar, and N. Aouf, Full linear control of a quadrotor UAV, LQ vs H∞, UKACC International Conference on Control, pp. 133-138 (2014).

A. Sorensen, Autonomous control of a miniature quadrotor following fast trajectories, Master thesis, Aalborg University, 2010.

G. V. Raffo, M. G. Ortega, and F. R. Rubio, MPC with Nonlinear ℋ∞ Control for Path Tracking of a Quad-Rotor Helicopter, IFAC Proceedings Volumes 41(2) (2008), 8564-8569.

G. Ganga and M. M. Dharmana, MPC controller for trajectory tracking control of quadcopter, Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1-6 (2017).

Deif, T., Kassem, A., El Baioumi, G., Modeling, Robustness, and Attitude Stabilization of Indoor Quad Rotor Using Fuzzy Logic Control, (2014) International Review of Aerospace Engineering (IREASE), 7 (6), pp. 192-201.

Deif, T., Kassem, A., El Baioumi, G., Modeling and Attitude Stabilization of Indoor Quad Rotor, (2014) International Review of Aerospace Engineering (IREASE), 7 (2), pp. 43-47.

Iswanto, I., Ataka, A., Inovan, R., Wahyunggoro, O., Imam Cahyadi, A., Disturbance Rejection for Quadrotor Attitude Control Based on PD and Fuzzy Logic Algorithm, (2016) International Review of Automatic Control (IREACO), 9 (6), pp. 405-412.

Agustinah, T., Isdaryani, F., Nuh, M., Tracking Control of Quadrotor Using Static Output Feedback with Modified Command-Generator Tracker, (2016) International Review of Automatic Control (IREACO), 9 (4), pp. 242-251.

Belhadri, K., Kouadri, B., Zegai, M., Adaptive Neural Control Algorithm Design for Attitude Stabilization of Quadrotor UAV, (2016) International Review of Automatic Control (IREACO), 9 (6), pp. 390-396.

Carloni, G., Bousson, K., A Nonlinear Control Method for Autonomous Navigation Guidance, (2016) International Review of Civil Engineering (IRECE), 7 (4), pp. 102-113.

Bousson, K., Gameiro, T., A Quintic Spline Approach to 4D Trajectory Generation for Unmanned Aerial Vehicles, (2015) International Review of Aerospace Engineering (IREASE), 8 (1), pp. 1-9.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize