A Numerical Approach for Efficiency Analysis of Heat Distribution Through Fin
(*) Corresponding author
DOI: https://doi.org/10.15866/irease.v10i6.13458
Abstract
In this paper an analysis is carried out to study the efficiency of heat distribution through fins using finite element method (FEM) and differential quadrature method (DQM). Numerical solutions are obtained using both methods for temperature distribution over the fin surface. Analysis of surface solutions in terms of temperature and error distributions has been presented here. Solutions are also obtained using equally spaced (conventional) and non-equally spaced (optimum) mesh (nodal points) distribution techniques. Two-dimensional heat conduction problem has been solved in both equal and non-equal nodal points distribution cases (called here conventional FEM and DQM, optimum FEM and DQM respectively as CFEM and CDQM, OFEM and ODQM). The obtained results are compared and investigated with exact results. The best results are found in OFEM solutions. It is also found that, ODQM solutions reach very close to OFEM solutions with negligible error, whereas CFEM and CDQM solutions diverge with increasing number of nodal (mesh) points.
Copyright © 2017 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
Fakir, M., Khatun, S., Two-Dimensional Heat Transfer Through Long-Wide Insulated-Tip Thin Rectangular Fin: a Comparative Study, (2017) International Review of Aerospace Engineering (IREASE), 10 (3), pp. 167-173.
http://dx.doi.org/10.15866/irease.v10i3.12469
M. M. Fakir, S Khatun, Finite Element Based Comparison of One- and Two-Dimensional Heat Transfer Through fins, (2017 International Journal on Numerical and Analytical Methods in Engineering (IRENA), 5 (3).
Fakir, M., Khatun, S., Basri, S., Enhancement of Algorithm and Investigation of Heat Transfer Through Fins, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1037-1043.
M. M. Fakir, S. Basri, Comparison of Optimum Finite Element vs. Differential Quadrature Algorithms for Heat Transfer Problem in Two-dimensional Thin Fin, The Open Mechanical Engineering Journal, (Scopus indexed), 2011.
http://dx.doi.org/10.1109/cicsyn.2011.46
Md. Moslemuddin Fakir, S. Basri, R. Varatharajoo, A. A. Jaafar, A. S. Mohd. Rafie, D. L. A.Majid, Comparison of Optimum Finite Element Method vs. Differential Quadrature Method in Two-dimensional Heat Transfer Problem, (2008) International Review of Mechanical Engineering (IREME), 2 (3), pp. 483-488.
Md. Moslemuddin Fakir, S. Basri, R. Varatharajoo, A. A. Jaafar, A. S. Mohd. Rafie, D. L. A. Majid, Extended Conventional Finite Element Method vs. Differential Quadrature Method Comparison in Two-dimensional Heat Transfer Problem, (2008) International Review of Aerospace Engineering (IREASE), 1 (2), pp. 200-205.
Strang G and Fix G J, An Analysis of the Finite Element Method (New Jersey: Prentice-Hall, Inc), 1973.
http://dx.doi.org/10.1002/zamm.19750551121
Tirupathi R C and Ashok D B, Introduction to Finite Elements in Engineering (New Jersey: Prentice-Hall International, Inc), 2012.
http://dx.doi.org/10.7202/029029ar
Park S, Development and Applications of Finite Elements in Time Domain. (PhD Thesis, Virginia Polytechnic Institute and State University, USA) 1996.
http://dx.doi.org/10.21474/ijar01/4501
Hinton E and Owen D R J, An introduction to finite element computations (UK, Pineridge Press Limited), 1985.
http://dx.doi.org/10.1002/nme.1620150815
A. A. Sertkaya, K. Altinisik, K. Dincer, Experimental investigation of thermal performance of aluminum finned heat exchangers and open-cell aluminum foam heat exchangers, Exp. Thermal Fluid Sci. 36, 2012.
http://dx.doi.org/10.1016/j.expthermflusci.2011.08.008
H. Huisseune, C. T’Joen, P. De Jaeger, B. Ameel, S. De Schampheleire, M. De Paepe, Performance analysis of a compound heat exchanger by screening its design parameters, Appl. Therm. Eng. 51 (1–2) (2013) 490–501.
http://dx.doi.org/10.1016/j.applthermaleng.2012.09.044
Ozisik M. N, Heat Transfer: A Basic Approach (New York: McGraw-Hill), 1985.
http://dx.doi.org/10.1016/0017-9310(85)90250-9
G. B. Ribeiro, J. R. Barbosa Jr., Comparison of metal foam and louvered fins as airside heat transfer enhancement media for miniaturized condensers, Appl, Therm. Eng. 51, 334–337, 2013.
http://dx.doi.org/10.1016/j.applthermaleng.2012.09.008
H.J. Xu, Z.G. Qu, T.J. Lu, Y.L. He, W.Q. Tao (Thermal modeling of forced, convection in a parallel-plate channel partially filled with metallic foams), J. Heat Transfer 133, 2011
http://dx.doi.org/10.1115/1.4004209
A. Ejlali, A. Ejlali, K. Hooman, H. Gurgenci, Application of high porosity metal foams as air-cooled heat exchanger to high heat load removal systems, Int. Commun. Heat Mass Transfer 36, 674–679, 2009.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.03.001
B. Ameel, J. Degroote, C. T’Joen, P. De Jaeger, H. Huisseune, S. De Schampheleire, J. Vierendeels, M. De Paepe, Optimization of X-shaped louvered fin and tube heat exchangers with respect to a hysical performance criterion, Appl. Therm, Eng, 58 (1–2), 136–145, 2013.
http://dx.doi.org/10.1016/j.applthermaleng.2013.04.016
C. C. Wang, C. J. Lee, C. T. Chang, S.P. Lin, Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers, Int. J. Heat Mass Transfer 42, (11) (1999) 1945–1956.
http://dx.doi.org/10.1016/s0017-9310(98)00302-0
H. Huisseune, C. T’Joen, P. De Jaeger, B. Ameel, S. De Schampheleire, M. De Paepe, Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators, Int. J. Heat Mass Transfer 56 (1–2) (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.09.004
J. Li, S. Wang, J. Chen, Y.G. Lei, Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators, Int. J. Heat Mass Transfer 54(2011) 743–1751.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.01.017
T. A. Cowell, A general method for the comparison of compact heat transfer surfaces, J. Heat Transfer – Trans. ASME 112 (1990) 288–294.
http://dx.doi.org/10.1115/1.2910374
B. Ameel, J. Degroote, C. T’Joen, P. De Jaeger, H. Huisseune, S. De Schampheleire, J. Vierendeels, M. De Paepe, Optimization of X-shaped louvered fin and tube, heat exchangers while maintaining the physical meaning of the performance evaluation criterion, Appl. Therm. Eng. 58, 136–145, 2013.
http://dx.doi.org/10.1016/j.applthermaleng.2013.04.016
I. V. Singh, K. Sandeep & Ravi Prakash, Heat transfer analysis of two-dimensional fins using meshless element free galerkin method, Numerical Heat Transfer: Part A: Taylor, 2011.
http://dx.doi.org/10.1080/713838174
S. Payan, S. M. HosseiniSarvari, Reconstruction of Temperature Distribution in the Combustion Region of a Non-Gray Medium, Numerical Heat Transfer, 2015 - Taylor & Francis, 2015.
http://dx.doi.org/10.1080/10407782.2015.1023125
M Sankar, Y Do, S Ryu, B Jang ,Cooling of Heat Sources by Natural Convection Heat Transfer in a Vertical Annulus, Numerical Heat Transfer, Taylor & Francis, 2015.
http://dx.doi.org/10.1080/10407782.2015.1023097
Charles W. Bert and Moinuddin Malik, Differential Quadrature Method in Computational Mechanics: A Review, Appl. Mech. Rev. 49(1), 1 - 28 (Jan 01, 1996).
http://dx.doi.org/10.1115/1.3101882
doi:10.1115/1.3101882 History: Online April 20, 2009
http://dx.doi.org/10.1007/s100520100668
Kai Yanga, Jing Wangb, Jian-Ming Dua, Hai-FengPenga, Xiao-Wei Gaoa, Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity, International Journal of Heat and Mass Transfer; Volume 104, January 2017, Pages 1145–1151.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.015
D. F. Yun, Y. C. Hon, Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems, Engineering Analysis with Boundary Elements, Elsevier, Volume 67, June 2016, Pages 63–80.
http://dx.doi.org/10.1016/j.enganabound.2016.03.003
Chih-Wen Chang, A new meshless method for solving steady-state nonlinear heat conduction problems in arbitrary plane domain, Engineering Analysis with Boundary Elements, Elsevier, Received 8 April 2016, Revised 19 May 2016, Accepted 7 June 2016, Available online 17 June 2016.
http://dx.doi.org/10.1016/j.enganabound.2016.06.004
Zhi-Fu Zhou, Teng-Yu Xu, Bin Chen, Algorithms for the estimation of transient surface heat flux during ultra-fast surface cooling, International Journal of Heat and Mass Transfer, Volume 100, September 2016, Pages 1–10.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.058
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize