Open Access Open Access  Restricted Access Subscription or Fee Access

Review: Flow Control on a Squareback Model

James Julian(1*), Riza Farrash Karim(2), Budiarso Budiarso(3), Harinaldi Harinaldi(4)

(1) Department of Mechanical Engineering, Universitas Indonesia, Indonesia
(2) Department of Mechanical Engineering, Universitas Indonesia, Indonesia
(3) Department of Mechanical Engineering, Universitas Indonesia, Indonesia
(4) Department of Mechanical Engineering, Universitas Indonesia, Indonesia
(*) Corresponding author


DOI: https://doi.org/10.15866/irease.v10i4.12636

Abstract


This paper focuses on reviewing various flow control methods which have been applied on a squareback model. In order to understand the several issues related to the real practice, this review starts from the explanation of the aerodynamics of the backward facing step and finally of the squareback model itself. The aim of this review is to provide a comprehensive source of information regarding flow control on a squareback model as well as the fundamentals of the aerodynamics understanding in the related objects, and also to put several factors involving this issue in order to guide future findings and inventions to be able to locate the problem more easily.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Review; Flow Control; Squareback; Aerodynamics

Full Text:

PDF


References


N. Benard, P. Sujar-Garrido, J.-P. Bonnet, and E. Moreau, Control of the coherent structure dynamics downstream of a backward facing step by DBD plasma actuator, Int. J. Heat Fluid Flow, 2016.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.04.009

E. C. Maskell, Flow separation in three dimensions (Ministry of Supply, Royal Aircraft Establishment, RAE Farnborough, 1955).
http://dx.doi.org/10.1108/eb032561

M. Gad-el-Hak, Flow Control: Passive, active and reactive flow management (Cambridge University Press, 2000).
http://dx.doi.org/10.1017/cbo9780511529535

N. Rott, Unsteady viscous flow in the vicinity of a stagnation point, Q. Appl. Math., vol. 13, no. 4, pp. 444–451, 1956.
http://dx.doi.org/10.1090/qam/74194

F. K. Moore, On the separation of the unsteady laminar boundary layer, in Grenzschichtforschung/Boundary Layer Research, Springer, 1958, pp. 296–311.
http://dx.doi.org/10.1007/978-3-642-45885-9_23

J. Rajasekaran, On the flow characteristics behind a backward-facing step and the design of a new axisymmetric model for their study. University of Toronto, 2011.
http://dx.doi.org/10.1002/pamm.201510227

S. C. C. Bailey, R. J. Martinuzzi, and G. A. Kopp, The effects of wall proximity on vortex shedding from a square cylinder: three-dimensional effects, Phys. Fluids, vol. 14, no. 12, pp. 4160–4177, 2002.
http://dx.doi.org/10.1063/1.1514972

A. J. Smits, A visual study of a separation bubble, in International Symposium on Flow Visualization, Bochum, West Germany, 1981, pp. 204–208.
http://dx.doi.org/10.1007/978-3-642-84824-7_52

C. D. Winant and F. K. Browand, Vortex pairing- The mechanism of turbulent mixing-layer growth at moderate Reynolds number, J. Fluid Mech., vol. 63, no. 2, pp. 237–255, 1974.
http://dx.doi.org/10.1017/s0022112074001121

T. R. Troutt, S. Bhattacherjee, and B. Scheelke, Modification of vortex interactions in a reattaching separated flow, AIAA J., vol. 24, no. 4, pp. 623–629, 1986.
http://dx.doi.org/10.2514/3.9317

F. W. Roos and J. T. Kegelman, Control of coherent structures in reattaching laminar and turbulent shear layers, AIAA J., vol. 24, no. 12, pp. 1956–1963, 1986.
http://dx.doi.org/10.2514/3.9553

S. K. Robinson, Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., vol. 23, no. 1, pp. 601–639, 1991.
http://dx.doi.org/10.1146/annurev.fl.23.010191.003125

A. K. M. F. Hussain, Coherent structures and turbulence, J. Fluid Mech., vol. 173, pp. 303–356, 1986.
http://dx.doi.org/10.1017/s0022112086001192

L. M. Hudy, A. M. Naguib, and W. M. Humphreys Jr, Wall-pressure-array measurements beneath a separating/reattaching flow region, Phys. Fluids, vol. 15, no. 3, pp. 706–717, 2003.
http://dx.doi.org/10.1063/1.1540633

L. Chew and W. Christiansen, Coherent structure effects on the optical performance of plane shearlayers, AIAA J., vol. 29, no. 1, pp. 76–80, 1991.
http://dx.doi.org/10.2514/3.10547

Harinaldi, T. Ueda, and M. Mizomoto, Effect of slot gas injection to the flow field and coherent structure characteristics of a backstep flow, Int. J. Heat Mass Transf., vol. 44, no. 14, pp. 2711–2726, 2001.
http://dx.doi.org/10.1016/s0017-9310(00)00301-x

M. Pastoor, L. Henning, B. R. Noack, R. King, and G. Tadmor, Feedback shear layer control for bluff body drag reduction, J. Fluid Mech., vol. 608, pp. 161–196, 2008.
http://dx.doi.org/10.1017/s0022112008002073

P. Bradshaw and F. Y. F. Wong, The reattachment and relaxation of a turbulent shear layer, J. Fluid Mech., vol. 52, no. 1, pp. 113–135, 1972.
http://dx.doi.org/10.1017/s002211207200299x

F. Scarano and M. L. Riethmuller, Iterative multigrid approach in PIV image processing with discrete window offset, Exp. Fluids, vol. 26, no. 6, pp. 513–523, 1999.
http://dx.doi.org/10.1007/s003480050318

S. D. Hall, M. Behnia, C. A. J. Fletcher, and G. L. Morrison, Investigation of the secondary corner vortex in a benchmark turbulent backward-facing step using cross-correlation particle imaging velocimetry, Exp. Fluids, vol. 35, no. 2, pp. 139–151, 2003.
http://dx.doi.org/10.1007/s00348-003-0626-9

J. K. Eaton and J. P. Johnston, A review of research on subsonic turbulent flow reattachment, AIAA J., vol. 19, no. 9, pp. 1093–1100, 1981.
http://dx.doi.org/10.2514/3.60048

O. Almeida, S. Mansur, and A. Silveira-Neto, On the flow past rectangular cylinders: physical aspects and numerical simulation, Therm. Eng, vol. 7, no. 1, pp. 55–64, 2008.
http://dx.doi.org/10.1007/978-1-4020-5152-2_75

N. Steggel, A numerical investigation of the flow around rectangular cylinders. University of Surrey, 1998.
http://dx.doi.org/10.1063/1.4967544

P. W. Bearman and D. M. Trueman, An investigation of the flow around rectangular cylinders, Aeronaut. Q., vol. 23, no. 3, pp. 229–237, 1972.
http://dx.doi.org/10.1299/jsmeicjwsf.2005.427

A. Laneville and L. Yong, Mean flow patterns around two-dimensional rectangular cylinders and their interpretation, J. Wind Eng. Ind. Aerodyn., vol. 14, no. 1–3, pp. 387–398, 1983.
http://dx.doi.org/10.1016/b978-0-444-42341-2.50048-9

A. Okajima, Strouhal numbers of rectangular cylinders, J. Fluid Mech., vol. 123, pp. 379–398, 1982.
http://dx.doi.org/10.1017/s0022112082003115

Y. Nakamura, Y. Ohya, and H. Tsuruta, Experiments on vortex shedding from flat plates with square leading and trailing edges, J. Fluid Mech., vol. 222, pp. 437–447, 1991.
http://dx.doi.org/10.1017/s0022112091001167

L. Henning and R. King, Drag reduction by closed-loop control of a separated flow over a bluff body with a blunt trailing edge, in Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 494–499.
http://dx.doi.org/10.1109/cdc.2005.1582204

L. M. Milne-Thompson, Theoretical hydrodynamics, London MacMillan, 1968, 5th ed., vol. 1, 1968.
http://dx.doi.org/10.1007/978-1-349-00517-8_2

S. C. C. Bailey, The effect of wall proximity on vortex shedding from a square cylinder, MESc thesis, Fac. Eng. Sci. Univ. West. Ontario, London, Canada, 2001.
http://dx.doi.org/10.1007/s00348-003-0594-0

L. Prandtl, Uber Flussigkeits bewegung bei sehr kleiner Reibung, Verhal. III Int. Math. Kong, pp. 484–491, 1904.
http://dx.doi.org/10.1007/978-3-662-11836-8_43

M. Gad-el-Hak, Modern developments in flow control, Appl. Mech. Rev., vol. 49, no. 7, pp. 365–379, 1996.
http://dx.doi.org/10.1115/1.3101931

K. Bussmann and H. Münz, Die stabilitaet der laminaren reibungsschicht mit absaugung, Jahrb. Dtsch. Luftfahrtforsch., vol. 1, pp. 36–39, 1942.
http://dx.doi.org/10.1007/bf00548005

G. Nati, M. Kotsonis, S. Ghaemi, and F. Scarano, Control of vortex shedding from a blunt trailing edge using plasma actuators, Exp. Therm. Fluid Sci., vol. 46, pp. 199–210, 2013.
http://dx.doi.org/10.1016/j.expthermflusci.2012.12.012

S. N. Joshi and Y. S. Gujarathi, A Review on Active and Passive Flow Control Techniques, 2016.
http://dx.doi.org/10.1017/cbo9780511529535.008

Z. Mohamed-Kassim and A. Filippone, Fuel savings on a heavy vehicle via aerodynamic drag reduction, Transp. Res. Part D Transp. Environ., vol. 15, no. 5, pp. 275–284, 2010.
http://dx.doi.org/10.1016/j.trd.2010.02.010

A. Altaf, A. A. Omar, and W. Asrar, Review Of Passive Drag Reduction Techniques For Bluff Road Vehicles,IIUM Eng. J., vol. 15, no. 1, 2014.
http://dx.doi.org/10.1016/j.jweia.2014.08.006

T. Lee and L. S. Ko, PIV investigation of flowfield behind perforated Gurney-type flaps, Exp. Fluids, vol. 46, no. 6, pp. 1005–1019, 2009.
http://dx.doi.org/10.1007/s00348-008-0606-1

G. Fourrié, L. Keirsbulck, L. Labraga, and P. Gilliéron, Bluff-body drag reduction using a deflector, Exp. Fluids, vol. 50, no. 2, pp. 385–395, 2011.
http://dx.doi.org/10.1007/s00348-010-0937-6

J.-L. Aider, J.-F. Beaudoin, and J. E. Wesfreid, Drag and lift reduction of a 3D bluff-body using active vortex generators, Exp. Fluids, vol. 48, no. 5, pp. 771–789, 2010.
http://dx.doi.org/10.1007/s00348-009-0770-y

J. Ha, S. Jeong, and S. Obayashi, Drag reduction of a pickup truck by a rear downward flap, Int. J. Automot. Technol., vol. 12, no. 3, pp. 369–374, 2011.
http://dx.doi.org/10.1007/s12239-011-0043-7

P. Gilliéron and A. Kourta, Aerodynamic drag reduction by vertical splitter plates, Exp. Fluids, vol. 48, no. 1, pp. 1–16, 2010.
http://dx.doi.org/10.1007/s00348-009-0705-7

W. R. Lanser, J. C. Ross, and A. E. Kaufman, Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer, SAE Technical Paper, 1991.
http://dx.doi.org/10.4271/912125

B. Khalighi, S. Zhang, C. Koromilas, S. R. Balkanyi, L. P. Bernal, G. Iaccarino, and P. Moin, Experimental and computational study of unsteady wake flow behind a bluff body with a drag reduction device, SAE Technical Paper, 2001.
http://dx.doi.org/10.4271/2001-01-1042

V. J. Modi, S. S. Hill, and T. Yokomizo, Drag reduction of trucks through boundary-layer control, J. Wind Eng. Ind. Aerodyn., vol. 54, pp. 583–594, 1995.
http://dx.doi.org/10.1016/0167-6105(94)00074-n

C.-H. Bruneau, I. Mortazavi, and P. Gilliéron, Flow regularisation and drag reduction around blunt bodies using porous devices, in IUTAM Symposium on Flow Control and MEMS, 2008, pp. 405–408.
http://dx.doi.org/10.1007/978-1-4020-6858-4_50

C. Zhang, J. Wang, and Y. Shang, Numerical simulation on drag reduction of revolution body through bionic riblet surface, Sci. China Technol. Sci., vol. 53, no. 11, pp. 2954–2959, 2010.
http://dx.doi.org/10.1007/s11431-010-4140-z

L. Sirovich and S. Karlsson, Turbulent drag reduction by passive mechanisms, Nature, vol. 388, no. 6644, pp. 753–755, 1997.
http://dx.doi.org/10.1038/41966

K. Parker and A. T. Sayers, The effect of longitudinal microstriations and their profiles on the drag of flat plates, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 213, no. 8, pp. 775–785, 1999.
http://dx.doi.org/10.1243/0954406991522392

M. Falchi, G. Provenzano, D. Pietrogiacomi, and G. P. Romano, Experimental and numerical investigation of flow control on bluff bodies by passive ventilation, Exp. Fluids, vol. 41, no. 1, pp. 21–33, 2006.
http://dx.doi.org/10.1007/s00348-006-0141-x

G. K. Suryanarayana and A. Prabhu, Effect of natural ventilation on the boundary layer separation and near-wake vortex shedding characteristics of a sphere, Exp. Fluids, vol. 29, no. 6, pp. 582–591, 2000.
http://dx.doi.org/10.1007/s003480000126

G. Pujals, S. Depardon, and C. Cossu, Drag reduction of a 3D bluff body using coherent streamwise streaks, Exp. Fluids, vol. 49, no. 5, pp. 1085–1094, 2010.
http://dx.doi.org/10.1007/s00348-010-0857-5

J. M. Mode, Simulation of the Flow Over a Flat Dimpled Plate. Arizona State University, 2010.
http://dx.doi.org/10.1063/1.1407636

H. Park, D. Lee, W.-P. Jeon, S. Hahn, J. Kim, J. Kim, J. Choi, and H. Choi, Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device, J. Fluid Mech., vol. 563, pp. 389–414, 2006.
http://dx.doi.org/10.1017/s0022112006001364

A. K. Norman and B. J. McKeon, Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers, Exp. Fluids, vol. 51, no. 5, pp. 1439–1453, 2011.
http://dx.doi.org/10.1007/s00348-011-1161-8

L. Cattafesta, Y. Tian, and R. Mittal, Adaptive Control of Post-Stall Separated Flow Application to Heavy Vehicles, in The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains, Springer, 2009, pp. 151–160.
http://dx.doi.org/10.1007/978-3-540-85070-0_12

L. N. Cattafesta III and M. Sheplak, Actuators for active flow control, Annu. Rev. Fluid Mech., vol. 43, pp. 247–272, 2011.
http://dx.doi.org/10.1146/annurev-fluid-122109-160634

D. G. MacMynowski and D. R. Williams, Flow control terminology, See Joslin Mill., vol. 2009, pp. 59–72, 2009.
http://dx.doi.org/10.2514/5.9781563479892.0059.0071

A. Glezer and M. Amitay, Synthetic jets, Annu. Rev. Fluid Mech., vol. 34, no. 1, pp. 503–529, 2002.
http://dx.doi.org/10.1146/annurev.fluid.34.090501.094913

S. Chaligné, T. Castelain, M. Michard, and D. Juvé, Active control of the flow behind a two-dimensional bluff body in ground proximity, Comptes Rendus Mécanique, vol. 341, no. 3, pp. 289–297, 2013.
http://dx.doi.org/10.1016/j.crme.2012.10.043

J. P. Bons, R. Sondergaard, and R. B. Rivir, The fluid dynamics of LPT blade separation control using pulsed jets, in ASME Turbo Expo 2001: Power for Land, Sea, and Air, 2001, p. V003T01A064-V003T01A064.
http://dx.doi.org/10.1115/2001-gt-0190

D. R. Williams, D. Cornelius, and C. W. Rowley, Supersonic cavity response to open-loop forcing, in Active Flow Control, Springer, 2007, pp. 230–243.
http://dx.doi.org/10.1007/978-3-540-71439-2_14

K. McManus and J. Magill, Separation control in incompressible and compressible flows using pulsed jets, AIAA Pap., vol. 1948, p. 1996, 1996.
http://dx.doi.org/10.2514/6.1996-1948

V. Kumar and F. S. Alvi, Use of high-speed microjets for active separation control in diffusers, AIAA J., vol. 44, no. 2, pp. 273–281, 2006.
http://dx.doi.org/10.2514/1.8552

F. S. Alvi, C. Shih, R. Elavarasan, G. Garg, and A. Krothapalli, Control of supersonic impinging jet flows using supersonic microjets, AIAA J., vol. 41, no. 7, pp. 1347–1355, 2003.
http://dx.doi.org/10.2514/2.2080

V. H. Arakeri, A. Krothapalli, V. Siddavaram, M. B. Alkislar, and L. M. Lourenco, On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet, J. Fluid Mech., vol. 490, pp. 75–98, 2003.
http://dx.doi.org/10.1017/s0022112003005202

N. Zhuang, F. S. Alvi, M. B. Alkislar, and C. Shih, Supersonic cavity flows and their control, AIAA J., vol. 44, no. 9, pp. 2118–2128, 2006.
http://dx.doi.org/10.2514/1.14879

D. Greenblatt, I. J. Wygnanski, and C. L. Rumsey, Aerodynamic Flow Control, Encycl. Aerosp. Eng., 2010.
http://dx.doi.org/10.1002/9780470686652.eae019

T. Crittenden, A. Glezer, R. Funk, and D. Parekh, Combustion-driven jet actuators for flow control, AIAA Pap., vol. 2768, p. 2001, 2001.
http://dx.doi.org/10.2514/6.2001-2768

S. Raghu, Feedback-free fluidic oscillator and method. Google Patents, 03-Jul-2001.
http://dx.doi.org/10.2514/6.2013-2478

R. Seele, P. Tewes, R. Woszidlo, M. A. McVeigh, N. J. Lucas, and I. J. Wygnanski, Discrete sweeping jets as tools for improving the performance of the V-22, J. Aircr., vol. 46, no. 6, pp. 2098–2106, 2009.
http://dx.doi.org/10.2514/1.43663

A. Seifert, S. Eliahu, D. Greenblatt, and I. Wygnanski, Use of piezoelectric actuators for airfoil separation control, AIAA J., vol. 36, no. 8, pp. 1535–1537, 1998.
http://dx.doi.org/10.2514/3.14000

S. A. Jacobson and W. C. Reynolds, Active control of streamwise vortices and streaks in boundary layers, J. Fluid Mech., vol. 360, pp. 179–211, 1998.
http://dx.doi.org/10.1017/s0022112097008562

J. M. Wiltse and A. Glezer, Manipulation of free shear flows using piezoelectric actuators, J. Fluid Mech., vol. 249, pp. 261–285, 1993.
http://dx.doi.org/10.1017/s002211209300117x

G. G. Arthur, B. J. McKeon, S. S. Dearing, J. F. Morrison, and Z. Cui, Manufacture of micro-sensors and actuators for flow control, Microelectron. Eng., vol. 83, no. 4, pp. 1205–1208, 2006.
http://dx.doi.org/10.1016/j.mee.2006.01.171

N. Benard and E. Moreau, Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations, J. Phys. D. Appl. Phys., vol. 43, no. 14, p. 145201, 2010.
http://dx.doi.org/10.1088/0022-3727/43/14/145201

R. Durscher and S. Roy, Novel multi-barrier plasma actuators for increased thrust, AIAA Pap., vol. 965, p. 2010, 2010.
http://dx.doi.org/10.2514/6.2010-965

C. Louste, G. Artana, E. Moreau, and G. Touchard, Sliding discharge in air at atmospheric pressure: electrical properties, J. Electrostat., vol. 63, no. 6, pp. 615–620, 2005.
http://dx.doi.org/10.1016/j.elstat.2005.03.026

D. V Roupassov and A. Y. Starikovskii, Development of nanosecond surface discharge in actuator geometry, IEEE Trans. plasma Sci., vol. 36, no. 4, pp. 1312–1313, 2008.
http://dx.doi.org/10.1109/tps.2008.920294

M. Samimy, I. Adamovich, B. Webb, J. Kastner, J. Hileman, S. Keshav, and P. Palm, Development and characterization of plasma actuators for high-speed jet control, Exp. Fluids, vol. 37, no. 4, pp. 577–588, 2004.
http://dx.doi.org/10.1007/s00348-004-0854-7

T. C. Corke, C. L. Enloe, and S. P. Wilkinson, Dielectric barrier discharge plasma actuators for flow control*, Annu. Rev. Fluid Mech., vol. 42, pp. 505–529, 2010.
http://dx.doi.org/10.1146/annurev-fluid-121108-145550

J. R. Roth, D. M. Sherman, and S. P. Wilkinson, Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. American Institute of Aeronautics and Astronautics, 1998.
http://dx.doi.org/10.2514/6.1998-328

D. M. Orlov, T. C. Corke, and M. Patel, Electric circuit model for aerodynamic plasma actuator, AIAA Pap., vol. 1206, p. 2006, 2006.
http://dx.doi.org/10.2514/6.2006-1206

W. MacCormack, O. R. Tutty, E. Rogers, and P. A. Nelson, Stochastic optimisation based control of boundary layer transition, Control Eng. Pract., vol. 10, no. 3, pp. 243–260, 2002.
http://dx.doi.org/10.1016/s0967-0661(01)00140-x

E. Stephen, N. Carter, C. Leung, C. Sumerel, C.-Y. Hsu, and T. McLaughlin, Flow over a backward-facing step under controlled-plasma actuator-induced perturbations, AIAA Pap., vol. 4591, p. 2010, 2010.
http://dx.doi.org/10.2514/6.2010-4591

C. L. Enloe, T. E. McLaughlin, R. D. Van Dyken, K. D. Kachner, E. J. Jumper, T. C. Corke, M. Post, and O. Haddad, Mechanisms and responses of a dielectric barrier plasma actuator: geometric effects, AIAA J., vol. 42, no. 3, pp. 595–604, 2004.
http://dx.doi.org/10.2514/1.3884

J. R. Roth, J. Rahel, X. Dai, and D. M. Sherman, The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) reactors for surface treatment applications, J. Phys. D. Appl. Phys., vol. 38, no. 4, p. 555, 2005.
http://dx.doi.org/10.1088/0022-3727/38/4/007

J. S. Shang, S. T. Surzhikov, R. Kimmel, D. Gaitonde, J. Menart, and J. Hayes, Mechanisms of plasma actuators for hypersonic flow control, Prog. Aerosp. Sci., vol. 41, no. 8, pp. 642–668, 2005.
http://dx.doi.org/10.1016/j.paerosci.2005.11.001

R. Sosa, G. Artana, E. Moreau, and G. Touchard, Stall control at high angle of attack with plasma sheet actuators, Exp. Fluids, vol. 42, no. 1, pp. 143–167, 2007.
http://dx.doi.org/10.1007/s00348-006-0227-5

Y. Bouremel, J.-M. Li, Z. Zhao, and M. Debiasi, Effects of AC Dielectric Barrier Discharge plasma actuator location on flow separation and airfoil performance, Procedia Eng., vol. 67, pp. 270–278, 2013.
http://dx.doi.org/10.1016/j.proeng.2013.12.026

E. Moreau, A. Labergue, and G. Touchard, DC and Pulsed Surface Corona Discharge along a Dielectric Flat Plate in Air: Electrical Properties and Discharge-Induced Ionic Wind, J. Adv. Oxid. Technol., vol. 8, no. 2, pp. 241–247, 2005.
http://dx.doi.org/10.1515/jaots-2005-0218

J. Julian and M. N. Rabbani, The effect of plasma actuator on the depreciation of the aerodynamic drag on box model, In Proceedings Of The 3rd Aun/Seed-Net Regional Conference On Energy Engineering And The 7th International Conference On Thermofluids (Rcene/Thermofluid 2015), 2016, vol. 1737, no. 1, p. 40004.
http://dx.doi.org/10.1063/1.4949278

S. Tabatabaeian, M. Mirzaei, A. Sadighzadeh, V. Damideh, and A. Shadaram, Experimental investigation of the effects of various plasma actuator configurations on lift and drag coefficients of a circular cylinder including the effects of electrodes, Chinese J. Aeronaut., vol. 25, no. 3, pp. 311–324, 2012.
http://dx.doi.org/10.1016/s1000-9361(11)60392-0

J. Julian, Harinaldi, Budiarso, R. Difitro, and P. Stefan, The Effect Of Plasma Actuator Placement On Drag Coefficient Reduction Of Ahmed Body As An Aerodynamic Model, Int. J. Technol., vol. 7, no. 2, pp. 306–313, 2016.
http://dx.doi.org/10.14716/ijtech.v7i2.2994

Y. Majima, M. Motosuke, S. Yamada, and S. Honami, Control of Backward Facing Step Flow in Low Reynolds Number by Synthetic Jets, 2012.
http://dx.doi.org/10.2514/6.2012-740

K.-B. Chun and H. J. Sung, Control of turbulent separated flow over a backward-facing step by local forcing, Exp. Fluids, vol. 21, no. 6, pp. 417–426, 1996.
http://dx.doi.org/10.1007/bf00189044

M. A. Z. Hasan, The flow over a backward-facing step under controlled perturbation: laminar separation, J. Fluid Mech., vol. 238, pp. 73–96, 1992.
http://dx.doi.org/10.1017/s0022112092001642

H. Choi, M. Hinze, and K. Kunisch, Instantaneous control of backward-facing step flows, Appl. Numer. Math., vol. 31, no. 2, pp. 133–158, 1999.
http://dx.doi.org/10.1016/s0168-9274(98)00131-7

V. Uruba, P. Jonáš, and O. Mazur, Control of a channel-flow behind a backward-facing step by suction/blowing, Int. J. Heat Fluid Flow, vol. 28, no. 4, pp. 665–672, 2007.
http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.04.002

J. C. S. Lai, J. Yue, and M. F. Platzer, Control of backward-facing step flow using a flapping foil, Exp. Fluids, vol. 32, no. 1, pp. 44–54, 2002.
http://dx.doi.org/10.1007/s003480200005

M. Sano, I. Suzuki, and K. Sakuraba, Control of turbulent channel flow over a backward-facing step by suction, J. fluid Sci. Technol., vol. 4, no. 1, pp. 188–199, 2009.
http://dx.doi.org/10.1299/jfst.4.188

E. Bideaux, P. Bobillier, E. Fournier, P. Gilliéron, M. El Hajem, J.-Y. Champagne, P. Gilotte, and A. Kourta, Drag reduction by pulsed jets on strongly unstructured wake: towards the square back control, Int. J. Aerodyn., vol. 1, no. 3–4, pp. 282–298, 2011.
http://dx.doi.org/10.1504/ijad.2011.038846

D. Krentel, R. Muminovic, A. Brunn, W. Nitsche, and R. King, Application of active flow control on generic 3D car models, in Active flow control II, Springer, 2010, pp. 223–239.
http://dx.doi.org/10.1007/978-3-642-11735-0_15

D. Barros, J. Borée, B. R. Noack, A. Spohn, and T. Ruiz, Bluff body drag manipulation using pulsed jets and Coanda effect, arXiv Prepr. arXiv1507.02243, 2015.
http://dx.doi.org/10.1017/jfm.2016.508

J. Gerhard, M. Pastoor, R. King, B. R. Noack, A. Dillmann, M. Morzynski, and G. Tadmor, Model-based control of vortex shedding using low-dimensional Galerkin models, AIAA Pap., vol. 4262, no. 2003, pp. 115–173, 2003.
http://dx.doi.org/10.2514/6.2003-4262

S. Siegel, K. Cohen, and T. McLaughlin, Feedback control of a circular cylinder wake in experiment and simulation, AIAA Pap., vol. 3569, p. 2003, 2003.
http://dx.doi.org/10.2514/6.2003-3569

B. K. Ahlborn, Zoological Physics: Quantitative Models of Body Design, Actions, and Physical Limitation of Animals (Springer, New York, 2004).
http://dx.doi.org/10.1063/1.2012466


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize