Open Access Open Access  Restricted Access Subscription or Fee Access

Flow Separation Control with a Plasma Actuator Over a Metallic NACA 4418

Rafael Bardera-Mora(1), Antonio J. Conesa(2), Mario Sánchez García(3*)

(1) Aerodynamic Department, National Institute for Aerospace Technology of Spain (INTA), Spain
(2) Aerodynamic Department, National Institute for Aerospace Technology of Spain (INTA), Spain
(3) Aerodynamic Department, National Institute for Aerospace Technology of Spain (INTA), Spain
(*) Corresponding author



The flow control over an airfoil was experimentally investigated with a Dielectric Barrier Discharge (DBD) plasma actuator. A NACA 4418 airfoil was used and the fact that it is metallic is the main difference with the numerous articles about plasma actuators over airfoils. Metallic airfoils are normally avoided to reduce risk of arcing and electromagnetic interferences. The plasma actuator was located at x/c = 0.1 measured from the leading edge. Through the Schlieren visualization, the characteristics of the actuator in a quiescent ambient was observed, showing a double wall jet due to the interaction of the plasma actuator and the metallic airfoil used as substrate. One of them is a co-flow wall jet and the other one is a counter-flow wall jet. Time-averaged Particle Image Velocimetry (PIV) images were used to examine the flow for different angles of attack at Rec = 40.000 and Rec = 200.000 when plasma is on and off. Velocity maps show that the plasma actuation delays the separation for both low and moderate Reynolds numbers. The turbulent kinetic energy (TKE) and Reynolds stress values are reduced when plasma can control the flow, however plasma actuator increases these values when it does not avoid the separation. The velocity magnitude profiles show the influence of the co-flow wall jet near exposed-electrode but the counter-flow is not observed. A reduction of the wake with plasma actuation is also seen. The results confirm the authority of plasma actuators to control the flow separation over a metallic airfoil. The effectiveness and the global performance in applications such as wind turbines or UAVs at moderate Reynolds number, where metallic airfoils are used, is expected to be improved avoiding the separation with plasma actuators.
Copyright © 2017 Praise Worthy Prize - All rights reserved.


Plasma Actuators; Particle Image Velocimetry; Flow Control; Dielectric Barrier Discharge; Metallic Airfoil

Full Text:



Gad-el-Hak M. Flow Control: The Future, Journal of Aircraft 38 (2001) 402-418.

J. R. Roth, D. M. Sherman, S. P. Wilkinson, Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma, 36th Aerosp. Sci. Meet. Exhib. 1 0328 (1998)

U. Kogelschatz, Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications, Plasma Chem. Plasma Process. 23 (2003) 1–46.

E. Moreau, Airflow control by non-thermal plasma actuators, J. Phys. D. Appl. Phys. 40 (2007) 605–636.

T. C. Corke, C. L. Enloe, S. P. Wilkinson, Dielectric Barrier Discharge Plasma Actuators for Flow Control, Annu. Rev. Fluid Mech. 42 (2010) 505–529.

M. Kotsonis, Diagnostics for Characterization of Plasma Actuators, Meas. Sci. Technol. 092001 (2015) 92001. doi:10.1088/0957-0233/26/9/092001

M. L. Post, T. C. Corke, Separation Control on High Angle of Attack Airfoil Using Plasma Actuators, AIAA J. 42 (2004) 2177–2184.

R. Spivey, R. Hewitt, H. Othman, T. Corke, Flow separation control on trailing edge radii using single dielectric barrier discharge plasma actuators: An application to vehicle drag control, in: Lect. Notes Appl. Comput. Mech. (2009) pp. 135–149.

D. B. Go, S. V. Garimella, T. S. Fisher, R. K. Mongia, Ionic winds for locally enhanced cooling, J. Appl. Phys. 102 (2007).

F. O. Thomas, A. Kozlov, T. C. Corke, Plasma Actuators for Landing Gear Noise Reduction, AIAA (2005) 23–25.

K. Masuyama, S. R. H. Barrett, On the performance of electrohydrodynamic propulsion, Proc. R. Soc. A Math. Phys. Eng. Sci. 469 (2013) 20120623–20120623.

E. Moreau, B. Nicolas, L.-S.-L. Jean-Daniel, C. Jean-Pierre, Electro-hydro-dynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure, J. Phys. D. Appl. Phys. 46 (2013) 475204.

Raju, Reni, Rajat Mittal, and Louis Cattafesta, Dynamics of airfoil separation control using zero-net mass-flux forcing, AIAA journal 46 (2008) 3103-3115.

K. Zaman, D. Culley, A study of Stall control over an Airfoil using Synthetic Jets, IAA Pap. (2006) 1–17.

T. N. Jukes, T. Segawa, H. Furutani, Flow Control on a NACA 4418 Using Dielectric-Barrier-Discharge Vortex Generators, AIAA J. 51 (2013) 452–464.

J. Little, M. Nishihara, I. Adamovich, M. Samimy, High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator, Exp. Fluids. 48 (2010) 521–537.

J. Huang, T.C. Corke, F.O. Thomas, Plasma Actuators for Separation Control of Low-Pressure Turbine Blades, AIAA J. 44 (2006) 51–57.

C. He, T. C. Corke, M. P. Patel, Plasma Flaps and Slats: An Application of Weakly Ionized Plasma Actuators, J. Aircr. 46 (2009) 864–873.

L.-H. Feng, K.-S. Choi, J.-J. Wang, Flow control over an airfoil using virtual Gurney flaps, J. Fluid Mech. 767 (2015) 595–626.

L. H. Feng, T. N. Jukes, K. S. Choi, J. J. Wang, Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap, Exp. Fluids. 52 (2012) 1533–1546.

G. Tathiri, H. Parishani, S. G. Pouryoussefi, E. Esmaeilzadeh, S. M. Mirsajedi, M. Mirzaei, N. Khatibzadeh, Experimental Investigation of Separation Control on a NACA0024 Airfoil using Stationary and Non-Stationary AC-Dielectric Barrier Discharge Plasma Actuator, J. Appl. Fluid Mechanics (2016).

E. Carbonell, R. Pereira, M. Kotsonis, Airfoil stall hysteresis control with DBD plasma actuation (2017), 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2017-1803).

J. G. Zheng, Y. D. Cui, Z. J. Zhao, J. Li, B. C. Khoo Investigation of airfoil leading edge separation control with nanosecond plasma actuator, Phys. Review Fluids, 1(7) (2016).

A. Esfahani, N. Webb, M. Samimy, Stall Cell Formation over a Boeing Vertol VR-7 Airfoil (2017), 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2017-1577).

A. J. Conesa Torres, Flow Structure Modification Using Plasma Actuation for Enhanced UAV Flight Control. Advanced UAV Aerodynamics, Flight Stability and Control: Novel Concepts, Theory and Applications, 547-576 (2017).

W. Merzkirch, Flow Visualizations, (Second Edition Academic Press, Inc. USA 1987).

G.S. Settles, Schlieren and Shadowgraph Techniques, (Springer 2001).

M. Raffel, C.E. Willert, S.T. Wereley, J. Kompenhans, Particle Image Velocimetry, A practical Guide (Second Edition, Springer-Verlag Berlin 2007).

R.J. Adrian, J. Westerweel, Particle Image Velocimetry (Cambridge University Press 2011).

N. Benard, J. Jolibois, G. Touchard, E. Moreau, A directional plasma-jet device generated by double dbd actuators - An active vortex generator for aerodynamic flow control, in: 4th AIAA Flow Control Conf. (2008).

D.F. Opaits, D. V. Roupassov, S.M. Starikovskaia, A.Y. Starikovskii, I. N. Zavialov, S. G. Saddoughi, Plasma control of boundary layer using low-temperature non-equilibrium plasma of gas discharge, in: 43rd AIAA Aerosp. Sci. Meet. Exhib. Meet. Pap. (2005) pp. 10469–10474.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2021 Praise Worthy Prize