Open Access Open Access  Restricted Access Subscription or Fee Access

Two-Dimensional Heat Transfer Through Long-Wide Insulated-Tip Thin Rectangular Fin: a Comparative Study


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irease.v10i3.12469

Abstract


This paper presents a comparative study of the distribution of temperature in a long-wide, insulated-tip rectangular fin. The numerical analysis and comparison of 2-dimensional heat conduction problem have been performed using both finite element method (FEM) and differential quadrature method (DQM). The surface solutions in terms of temperature distribution and error have been presented for comparison using both the methods. In FEM, the elements were generated with equally spaced called conventional FEM (CFEM) and with non-equally spaced called optimum FEM (OFEM). In DQM, the generation of mesh are only with non-equally spaced, called optimum DQM (ODQM). The ambient temperature is considered 20°C. The average percentage errors for OFEM, CFEM and ODQM are respectively 3.77E-02, 1.16E-01 and 4.10E-02. The surface temperature distribution and error comparison reveal that OFEM results are better and more precise than ODQM and CFEM results which show its potentiality.
Copyright © 2017 Praise Worthy Prize - All rights reserved.

Keywords


Differential Quadrature Method; Finite Element Method; Heat Transfer; Rectangular Fin

Full Text:

PDF


References


Fakir, M., Khatun, S., Basri, S., Enhancement of Algorithm and Investigation of Heat Transfer Through Fins, (2013) International Review of Mechanical Engineering (IREME), 7 (6), pp. 1037-1043.

M. M. Fakir, S. Basri, Comparison of Optimum Finite Element vs. Differential Quadrature Algorithms for Heat Transfer Problem in Two-dimensional Thin Fin, The Open Mechanical Engineering Journal, 2011.

M. M. Fakir, S. Basri, I. B. M. Sahat, K. V. Sharma, R. A. Bakar, An Optimum Finite Element Algorithm for Heat Transfer Problem in Two-dimensional Insulated-tip Thin Rectangular Fin, International Journal of Information Systems, Volume II, Issue II, Dec 2011.

Md. Moslemuddin Fakir, S. Basri, R. Varatharajoo, A. A. Jaafar, A. S. Mohd. Rafie, D. L. A.Majid, Comparison of Optimum Finite Element Method vs. Differential Quadrature Method in Two-dimensional Heat Transfer Problem, (2008) International Review of Mechanical Engineering (IREME), 2 (3), pp. 483-488.

Md. Moslemuddin Fakir, S. Basri, R. Varatharajoo, A. A. Jaafar, A. S. Mohd. Rafie, D. L. A. Majid, Extended Conventional Finite Element Method vs. Differential Quadrature Method Comparison in Two-dimensional Heat Transfer Problem, (2008) International Review of Aerospace Engineering (IREASE), 1 (2), pp. 200-205.

F.L. Zhan, J.J. Tang, G.L. Ding, D.W. Zhuang, Experimental investigation on particle deposition characteristics of wavy fin-and-tube heat exchangers, Appl. Therm. Eng., 99 (2016), pp. 1039–1047
http://dx.doi.org/10.1016/j.applthermaleng.2016.01.136

Tirupathi R C and Ashok D B, Introduction to Finite Elements in Engineering (New Jersey: Prentice-Hall International, Inc,2012).
http://dx.doi.org/10.7202/029029ar

A.A. Bhuiyan, M.R. Amin, J. Naser, A.K.M.S. Islam, Effects of geometric parameters for wavy finned-tube heat exchanger in turbulent flow: a CFD modelling, Front, Heat Mass Transfer, 6 (2015)
http://dx.doi.org/10.5098/hmt.6.5

Hinton E and Owen D R J, An introduction to finite element computations(UK, Pineridge Press Limited,1985).
http://dx.doi.org/10.1002/nme.1620150815

Y.L. He, H. Han, S.Z. Tang, T. Zhou, Sulfuric acid deposition characteristics of H-type finned tube bank with 10 rows, Int. J. Heat Mass Transfer, 81 (2015), pp. 137–141
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.10.013

F.L. Zhan, J.J. Tang, G.L. Ding, D.W. Zhuang, Experimental investigation on particle deposition characteristics of wavy fin-and-tube heat exchangers, Appl. Therm. Eng., 99 (2016), pp. 1039–1047
http://dx.doi.org/10.1016/j.applthermaleng.2016.01.136

H. Huisseune, C. T’Joen, P. De Jaeger, B. Ameel, S. De Schampheleire, M. De Paepe, Performance analysis of a compound heat exchanger by screening its design parameters, Appl. Therm. Eng.51 (1–2) (2013) 490–501.
http://dx.doi.org/10.1016/j.applthermaleng.2012.09.044

Ozisik M. N, Heat Transfer: A Basic Approach(New York: McGraw-Hill, 1985).

G.B. Ribeiro, J.R. Barbosa Jr., Comparison of metal foam and louvered fins as airside heat transfer enhancement media for miniaturized condensers, Appl, Therm. Eng. 51, 334–337,2013
http://dx.doi.org/10.1016/j.applthermaleng.2012.09.008

Mehrzad Zadhoush, Afshin Ahmadi Nadooshan, Masoud Afrand, Hasan ghafori, Constructal optimization of longitudinal and latitudinal rectangular fins used for cooling a plate under free convection by the intersection of asymptotes method, International Journal of Heat and Mass Transfer,Volume 112, September 2017, Pages 441–453
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.108

F.L. Zhan, J.J. Tang, G.L. Ding, D.W. Zhuang, Experimental investigation on particle deposition characteristics of wavy fin-and-tube heat exchangers, Appl. Therm. Eng., 99 (2016), pp. 1039–1047
http://dx.doi.org/10.1016/j.applthermaleng.2016.01.136

R.V. Rao, G.G. Waghmare, Multi-objective design optimization of a plate-fin heat sink using a teaching-learning-based optimization algorithm, Appl. Therm. Eng., 76 (2015), pp. 521–529
http://dx.doi.org/10.1016/j.applthermaleng.2014.11.052

Y.L. He, H. Han, S.Z. Tang, T. Zhou, Sulfuric acid deposition characteristics of H-type finned tube bank with 10 rows, Int. J. Heat Mass Transfer, 81 (2015), pp. 137–141
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.10.013

Ong Shuwen, et al .Constructal optimization of cylindrical heat sources surrounded with a fin based on minimization of hot spot temperature, Int. Commun., Heat Mass Transfer, 68 (2015), pp. 1–7
http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.08.004

H. Huisseune, C. T’Joen, P. De Jaeger, B. Ameel, S. De Schampheleire, M. De Paepe, Performance enhancement of a louvered fin heat exchanger by using delta winglet vortex generators, Int. J. Heat Mass Transfer 56 (1–2) (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.09.004

J. Li, S. Wang, J. Chen, Y.G. Lei, Numerical study on a slit fin-and-tube heat exchanger with longitudinal vortex generators, Int. J. Heat Mass Transfer 54,743–1751, 2011.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.01.017

T.A. Cowell, A general method for the comparison of compact heat transfer surfaces, J. Heat Transfer – Trans. ASME 112, 288–294, 1990.
http://dx.doi.org/10.1115/1.2910374

Umesh V. Awasarmol, Ashok T. Pise, An experimental investigation of natural convection heat transfer enhancement from perforated rectangular fins array at different inclinations, Exp. Thermal Fluid Sci., 68 (2015), pp. 145–154.
http://dx.doi.org/10.1016/j.expthermflusci.2015.04.008

T.A. Cowell, A general method for the comparison of compact heat transfer surfaces, J. Heat Transfer – Trans. ASME112, 288–294, 1990
http://dx.doi.org/10.1115/1.2910374

I. V. Singh, K. Sandeep & Ravi Prakash, Heat transfer analysis of two-dimensional fins using meshless element free galerkin method, Numerical Heat Transfer: Part A: Taylor, 2011.
http://dx.doi.org/10.1080/713838174

S Payan, SM Hosseini Sarvari, Reconstruction of Temperature Distribution in the Combustion Region of a Non-Gray Medium, Numerical Heat Transfer, Taylor & Francis,2015.
http://dx.doi.org/10.1080/10407782.2015.1023125

M Sankar, Y Do, S Ryu, B Jang ,Cooling of Heat Sources by Natural Convection Heat Transfer in a Vertical Annulus, Numerical Heat Transfer, Taylor & Francis,2015.
http://dx.doi.org/10.1080/10407782.2015.1023097

Umesh V. Awasarmol, Ashok T. Pise, An experimental investigation of natural convection heat transfer enhancement from perforated rectangular fins array at different inclinations, Exp. Thermal Fluid Sci., 68 (2015), pp. 145–154.
http://dx.doi.org/10.1016/j.expthermflusci.2015.04.008

Kai Yanga, Jing Wangb, Jian-Ming Dua, Hai-Feng Penga, Xiao-Wei Gaoa, Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity, International Journal of Heat and Mass Transfer; Volume 104, Pages 1145–1151, January 2017.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.015

D.F. Yun, Y.C. Hon, Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems, Engineering Analysis with Boundary Elements, Elsevier, Volume 67, Pages 63–80, June 2016.
http://dx.doi.org/10.1016/j.enganabound.2016.03.003

Chih-Wen Chang, A new meshless method for solving steady-state nonlinear heat conduction problems in arbitrary plane domain, Engineering Analysis with Boundary Elements, Elsevier, Received 8 April 2016, Revised 19 May 2016, Accepted 7 June 2016, Available online 17 June 2016.
http://dx.doi.org/10.1016/j.enganabound.2016.06.004

Zhi-Fu Zhou, Teng-Yu Xu, Bin Chen, Algorithms for the estimation of transient surface heat flux during ultra-fast surface cooling, International Journal of Heat and Mass Transfer, Volume 100, Pages 1–10, September 2016.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.058


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize