Open Access Open Access  Restricted Access Subscription or Fee Access

Design of High Temperature Six-Phase Starter-Generator Embedded in Aerospace Engine


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/irease.v9i6.10893

Abstract


This paper examines the problem of the installation of the electric machine to the high pressure shaft to increase the electrification of aircraft engines and create More Electrical Engine. Different ways of synchronous generator integration in the aircraft engine by worldwide aircraft engines manufacturers was discussed. A new design of the high temperature synchronous generator mounted on high pressure shaft is proposed. To evaluate the effectiveness of synchronous generator the electromagnetic, thermal and mechanical calculations are made. High temperature synchronous generator cooling system was designed and system of mechanical decoupling of the stator at short circuits is proposed.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


More Electrical Engine; Synchronous Generator; High Pressure Shaft

Full Text:

PDF


References


Besnard, J.-P.,Biais, F.,Martinez, M. Electrical rotating machines and power electronics for new aircraft equipment systems, ICAS-Secretariat - 25th Congress of the International Council of the Aeronautical Sciences 2006
http://dx.doi.org/10.1109/acemp.2007.4510467

Van Der Geest M.,Polinder H.,Ferreira J.A.,Zeilstra D. Machine selection and initial design of an aerospace starter/generator, 2013 IEEE International Electric Machines and Drives Conference, IEMDC 2013; Chicago, IL; United States; 12 May 2013 through 15 May 2013; Code 98445.
http://dx.doi.org/10.1109/iemdc.2013.6556253

Rajashekara, K., Grieve, J., Daggett, D., Hybrid Fuel Cell Power in Aircrafrt: A feasibility study for onboard power generation using a combination of solid oxide fuel cells and gas turbines, IEEE Industry Application Magazine, vol. 14, no. 3, pp. 54–60, 2008
http://dx.doi.org/10.1109/mias.2008.923606

Xin Zhao; Guerrero, J.M.; Xiaohua Wu "Review of aircraft electric power systems and architectures", Energy Conference (ENERGYCON), 2014 IEEE International, On page(s): 949 – 953
http://dx.doi.org/10.1109/energycon.2014.6850540

Jones, R.I., "The More Electric Aircraft: the past and the future," Electrical Machines and Systems for the More Electric Aircraft, pp. 1/1-1/4, 1999.
http://dx.doi.org/10.1049/ic:19990830

Quigley, R.E.J., "More Electric Aircraft", IEEE Applied Power Electronics Conference and Exposition, pp. 906-911 APEC '1993.
http://dx.doi.org/10.1109/apec.1993.290667

J. Kang, Multi-Pulse Rectifier Solutions for Input Harmonics Mitigation, Yaskawa Electric America, 2005. Y.
http://dx.doi.org/10.1109/ias.2005.1518302

Nishida, Y. Okuma, K. Mino, Practical Evaluation of Simple 12- Pulse Three-Phase-Bridge Diode Rectifier of Capacitor-Input-Type, International exhibition and conference for power electronics, PCIM EUROPE, 2007, Nuremberg
http://dx.doi.org/10.1109/pccon.2007.373132

Dieter Gerling, Mohammed Alnajjar, Six-Phase Electrically Excited Synchronous Generator for More Electric Aircraft, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2016, pp. 7–13.
http://dx.doi.org/10.1109/speedam.2016.7525938

Boglietti A.,Cavagnino A.,Staton D.A.,Popescu M. Experimental assessment of end region cooling arrangements in induction motor endwindings, IET Electric Power Applications.February 2011.Vol. 5. Issue 2. Pр. 203…209.
http://dx.doi.org/10.1049/iet-epa.2010.0176

R. Bojoi, Z. Li, S. A. Odhano, G. Griva and A. Tenconi, Unified direct-flux vector control of induction motor drives with maximum torque per ampere operation, Conf. Rec. IEEE ECCE 2013, pp. 3888-3895
http://dx.doi.org/10.1109/ecce.2013.6647216

Tosetti M.,Maggiore P.,Cavagnino A.,Vaschetto S. Conjugate heat transfer analysis of integrated brushless generators for more electric engines, 5th Annual IEEE Energy Conversion Congress and Exhibition.ECCE 2013; Denver, CO; United States; 15 September 2013through19 September 2013. Pp. 1518…1525.
http://dx.doi.org/10.1109/ecce.2013.6646885

Bojoi, R.,Cavagnino, A.,Tenconi, A.,Vaschetto, S. Control of shaft-line-embedded multiphase starter/generator for aero-engine. IEEE Transactions on Industrial Electronics , 2016, 641 - 652
http://dx.doi.org/10.1109/tie.2015.2472637

Cavagnino A.,Li Z.,Tenconi A.,Vaschetto S. Integrated generator for more electric engine: Design and testing of a scaled-size prototype, IEEE Transactions on Industry Applications.2013. Vol. 49. Issue 5.Pp. 2034…2043.
http://dx.doi.org/10.1109/tia.2013.2259785

C. Wenping, B. Mecrow, G. Atkinson, J. Bennet, D. Atkinson, Overview of Electric Motor Technologies Used for More Electric Aircraft, IEEE Transactions on Industrial Electronics, Vol. 59, No. 9, pp. 3523-3531, 2012.
http://dx.doi.org/10.1109/tie.2011.2165453

D. Ganev, High-Performance Electric Drives for Aerospace More Electric Architectures, IEEE Power Engineering Society Meeting, pp. 1-8, 2007.
http://dx.doi.org/10.1109/pes.2007.385463

Ismagilov F. R., Khairullin I.,Vavilov V., Farrakhov D., Yakupov A., Bekuzin V. A high-temperature frameless starter-generator integrated into an aircraft engine, Russian Aeronautics 2016, Volume 59, Issue 1, pp 107–111
http://dx.doi.org/10.3103/s1068799816010177

Jiabin Wang, Z. Sun, J. D. Ede, G. W. Jewell, J. J. A. Cullen, and A. J. Mitcham. Testing of a 250-Kilowatt Fault-Tolerant Permanent Magnet Power Generation System for Large Civil Aeroengines, Journal of Propulsion and Power, Vol. 24, No. 2 (2008), pp. 330-335.
http://dx.doi.org/10.2514/1.32158

Wang J., Howe D. Advanced electrical machines for new and emerging applications, Nordic Seminar on ‘Advanced Magnetic Materials and their Applications’ 10th/11th October 2007.Pori, Finland.
http://dx.doi.org/10.1109/icems.2005.202476

Rodrigues Leon. High temperature embedded electrical machines for aerospace turbine applications. PhD thesis, University of Sheffield. 2013.
http://dx.doi.org/10.1109/icelmach.2012.6350239

Electron Energy Corporation [Online]. Available: http://www.electronenergy.com/ [Accessed: 27-Sep-2016].
http://dx.doi.org/10.5040/9781474244282.0006

G. Dajaku, D. Gerling: Magnetic Radial Force Density of the PM Machine with 12teeth/10-poles Winding Topology, IEEE International Electric Machines and Drives Conference, IEMDC2009, Florida USA, May 3-6, 2009, pp.157-164
http://dx.doi.org/10.1109/iemdc.2009.5075434

G. Heins, D. Ionel, M. Thiele, Winding Factors and Magnetic Fields in Permanent Magnet Brushless Machines with Concentrated Windings and Modular Stator Cores, Energy Conversion Congress and Exposition (ECCE), pp. 5048 – 5055, 15.-19. September 2013.
http://dx.doi.org/10.1109/ecce.2013.6647382

A.M. El-Refaie, Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges, IEEE Transactions on Industrial Electronics, Jan. 2010.
http://dx.doi.org/10.1109/tie.2009.2030211

D. Ishak, Z. Q. Zhu: Comparison of PM Brushless Motors, Having Either All Teeth or Alternate Teeth Wound, IEEE Transactions on Energy Conversion, Vol. 21, No. 1, March 2006, pp. 95-103.
http://dx.doi.org/10.1109/tec.2005.853765

Magnussen F., Sadarangani Ch.: Winding factors and Joule losses of permanent magnet machines with concentrated windings. 2003 IEEE International Electric Machines & Drives Conference (IEMDC 2003), 01-04.06 Madison Wisconsin, USA.
http://dx.doi.org/10.1109/iemdc.2003.1211284

Gurakuq Dajaku, Sachar Spas, Xhevat Dajaku, and Dieter Gerling, Comparison of Two FSCW PM Machines for Integrated Traction Motor/Generator, 2015 IEEE International Electric Machines & Drives Conference (IEMDC) pp. 187–194
http://dx.doi.org/10.1109/iemdc.2015.7409058

Pyrhönen, J., Montonen, J., Lindh, P., Vauterin, J., Otto, M., Replacing Copper with New Carbon Nanomaterials in Electrical Machine Windings, (2015) International Review of Electrical Engineering (IREE), 10 (1), pp. 12-21.
http://dx.doi.org/10.15866/iree.v10i1.5253

Advanced Materials [Online]. Available: http://www.vacuumschmelze.com/ [Accessed: 27-Sep-2016].
http://dx.doi.org/10.5040/9781474244282.0006

Vavilov V., Ismagilov F.R., Hairullin I., Gusakov D. High Efficiency Ultra-High Speed Microgenerator Conf. Rec. IEEE IECON, 2016.
http://dx.doi.org/10.1109/iecon.2016.7792986

Nagorny A., Dravid N., Jansen R., Kenny B., “Design Aspects of a High Speed Permanent Magnet Synchronous Motor/Generator for Flywheel Applications”, NASA/TM-2005-213651, pp.1-7, 2005.
http://dx.doi.org/10.1109/iemdc.2005.195790

Bailey C., Saban D., Guedes-Pinto P. Design of High-Speed Direct-Connected Permanent-Magnet Motors and Generators for the Petrochemical Industry, IEEE Transactions on Industry Applications. – 2009. – Vol. 45. № 3. – pp. 1159–1165.
http://dx.doi.org/10.1109/tia.2009.2018964

Aleksandar Borisavljeviс Limits, Modeling and Design of High-Speed Permanent Magnet Machines, Printed by Wormann Print Service (Zutphen, the Netherlands, 2011)
http://dx.doi.org/10.1007/978-3-642-33457-3

Ismagilov, F., Khayrullin, I., Vavilov, V., Electromagnetic Processes in the Rotor Shroud of a High-Speed Magneto-Electric Generator Under Sudden Short-Circuit, (2014) International Review of Electrical Engineering (IREE), 9 (5), pp. 913-918.
http://dx.doi.org/10.15866/iree.v9i5.3148

K. Atallah , D. Howe , P. H. Mellor and D. A. Stone, Rotor loss in permanent-magnet brushless AC machines, IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1612-1617, 2000
http://dx.doi.org/10.1109/28.887213

H. Toda , Z. Xia , J. Wang , K. Atallah and D. Howe, Rotor eddy-current loss in permanent magnet brushless machines, IEEE Trans. Magn., vol. 40, no. 4, pp. 2104-2106, 2004
http://dx.doi.org/10.1109/tmag.2004.832481


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize