3D Backward-Facing Step Flow Structure Modification with Plasma Actuators
(*) Corresponding author
DOI: https://doi.org/10.15866/irease.v10i1.10491
Abstract
Backward-Facing Step (BFS) shape is a common configuration found in several engineering applications. The turbulent flow structure in the backside of a BFS leads to risky situations. Then, flow control is a useful technique to achieve safe conditions. In recent years, plasma devices have become an interesting technology with high importance for flow control because of non-moving parts, fast time response and low energy consumption. This paper presents the experimental investigation of a set of Dielectric Barrier Discharge (DBD) plasma actuators placed on the rounded edge of a BFS and its capability for flow control by wind tunnel testing. In contrast to the other studies, the behaviour of the plasma actuators in presence of 3D flow over a BFS was investigated. Firstly, a parametric study by analysing the location and the influence of the electrical parameters of the DBD plasma actuator was performed at a freestream velocity of 6 m/s using Particle Image Velocimetry (PIV). It was seen that actuator with -45° wall jet provides the highest flow control at 30 kVpp and 2.5 kHz with a reattachment length reduction of 65.6% referred to plasma off case. This configuration was optimized and compared with a double actuator for a higher velocity (10 m/s). The manufacturing complexity of the double actuator recommends the use of a simple actuator due to the fact that they have similar results, with a 30% of reattachment point reduction approximately at 10 m/s. Anyhow, the results confirm the authority of plasma actuators to modify the flow structure behind a BFS.
Copyright © 2017 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
F. Platt, J. R., Wind detection in a microcosm: ship/aircraft environment sensors, (1998), IEEE aerospace and electronic systems magazine, 13 (2), 26-33.
http://dx.doi.org/10.1109/62.656331
Lee R. G., Zan S. J., Wind tunnel testing to determine unsteady loads on a helicopter fuselage in a ship airwake, (2002), ICAS 2002 Congress, pp. 3111-1.
http://dx.doi.org/10.4050/1.3092869
Brownell C. J., Luznik L., Snyder M. R., Kang H. S., Wilkinson C. H., In situ velocity measurements in the near-wake of a ship superstructure, (2012), Journal of Aircraft, 49 (5), pp. 1440-1450.
http://dx.doi.org/10.2514/1.c031727
Nacakli Y., Landman D., Doane S., Investigation of Backward-Facing-Step Flow Field for Dynamic Interface Application, (2012), Journal of the American Helicopter Society, 57 (3), pp. 1-9.
http://dx.doi.org/10.4050/jahs.57.032005
Kääriä C. H., Wang Y., White M. D., Owen, I., An experimental technique for evaluating the aerodynamic impact of ship superstructures on helicopter operations, (2013), Ocean Engineering, 61, 97-108.
http://dx.doi.org/10.1016/j.oceaneng.2012.12.052
Meroney, R. N., Leitl, B. M., Rafailidis, S., &Schatzmann, M. (1999). Wind-tunnel and numerical modeling of flow and dispersion about several building shapes. Journal of Wind Engineering and Industrial Aerodynamics, 81 (1), pp. 333-345.
http://dx.doi.org/10.1016/s0167-6105(99)00028-8
Handbook A. S. H. R. A. E. (2001). Fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, 111.
http://dx.doi.org/10.2172/227706
Browand F., McCallen R., Ross, J. (Eds.). (2008), The aerodynamics of heavy vehicles II: Trucks, buses, and trains (Vol. 41). Springer Science & Business Media.
http://dx.doi.org/10.1007/978-3-540-85070-0
Armaly B. F., Durst F., Pereira J. C. F., Schönung, B., Experimental and theoretical investigation of backward-facing step flow, (1983), Journal of Fluid Mechanics, 127, pp. 473-496.
http://dx.doi.org/10.1017/s0022112083002839
Dol S. S., Particle image velocimetry investigation of steady flow over a backward-facing step, (2016), EPJ Web of Conferences Vol. 114, p. 02018.
http://dx.doi.org/10.1051/epjconf/201611402018
Abbott D. E., Kline S. J., Experimental investigation of subsonic turbulent flow over single and double backward facing steps, (1962), Journal of basic engineering, 84 (3), pp. 317-325.
http://dx.doi.org/10.1115/1.3657313
Bradshaw P., Wong F. Y. F., The reattachment and relaxation of a turbulent shear layer, (1972), Journal of Fluid Mechanics, 52 (01), pp. 113-135.
http://dx.doi.org/10.1017/s002211207200299x
Shafer D. M., Ghee T. A., Active and passive flow control over the flight deck of small naval vessels, (2005), University Libraries, Virginia Polytechnic Institute and State University.
http://dx.doi.org/10.2514/6.2005-5265
Findlay D. B., Ghee T., Experimental investigation of ship airwake flow control for a US Navy flight II-A class destroyer (DDG), Proceedings of the 3rd AIAA Flow Control Conference (2006, June), pp. 1303-1313.
http://dx.doi.org/10.2514/6.2006-3501
Greenwell D. I., Barrett R. V., Inclined screens for control of ship air wakes, Proceedings of the 3rd AIAA Flow Control Conference pp. 1314-1325, (2006, June).
http://dx.doi.org/10.2514/6.2006-3502
Moreau E., Airflow control by non-thermal plasma actuators, (2007), Journal of Physics D: Applied Physics, 40(3), 605.
http://dx.doi.org/10.1088/0022-3727/40/3/s01
Corke T. C., Enloe C. L., Wilkinson, S. P., Dielectric barrier discharge plasma actuators for flow control*, (2010), Annual review of fluid mechanics, 42, pp. 505-529.
http://dx.doi.org/10.1146/annurev-fluid-121108-145550
Kotsonis M., Diagnostics for characterization of plasma actuators, (2015), Measurement Science and Technology, 26(9), 092001.
http://dx.doi.org/10.1088/0957-0233/26/9/092001
Post M. L., Corke T. C., Separation control on high angle of attack airfoil using plasma actuators, (2004), AIAA journal, 42(11), pp. 2177-2184.
http://dx.doi.org/10.2514/1.2929
Roy S., Zhao P., DasGupta A., Soni J., Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds, (2016), AIP Advances, 6(2), 025322.
http://dx.doi.org/10.1063/1.4942979
Spivey R., Hewitt R., Othman H., Corke T., Flow Separation Control on Trailing Edge Radii using Single Dielectric Barrier Discharge Plasma Actuators: An Application to Vehicle Drag Control, In The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains (pp. 135-149), (Springer Berlin Heidelberg, 2009).
http://dx.doi.org/10.1007/978-3-540-85070-0_11
Matsuda K., Kato K., Uchida T., Hirano C., Sawata A., Flow Control of Bridge Deck Sections Using Dielectric Barrier Discharge Plasma Actuators, Proc. of 6th European and African Conference on Wind Engineering, (2013).
http://dx.doi.org/10.1115/pvp2015-45140
Bardera-Mora R., Conesa A., Lozano I., Simple frigate shape plasma flow control. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 0954410016630333, (2016).
http://dx.doi.org/10.1177/0954410016630333
Thomas F. O., Kozlov A., Corke T. C., Plasma actuators for landing gear noise reduction, (2005), AIAA paper, 3010.
http://dx.doi.org/10.2514/6.2005-3010
D'Adamo J., Sosa R., Artana G., Active control of a backward facing step flow with plasma actuators, (2014), Journal of Fluids Engineering, 136(12), 121105.
http://dx.doi.org/10.1115/1.4027598
Correale G., Flow control over a backward facing step by ns-DBD plasma actuator, 45th AIAA Fluid Dynamics Conference, p. 2470 (2015).
http://dx.doi.org/10.2514/6.2015-2470
Benard N., Sujar-Garrido P., Bayoda K. D., Bonnet J. P., Moreau E., Pulsed dielectric barrier discharge for manipulation of turbulent flow downstream a backward-facing-step, (2014), AIAA paper, 1127(2014), 1-21.
http://dx.doi.org/10.2514/6.2014-1127
Pouryoussefi S. G., Mirzaei M., Hajipour M., Experimental study of separation bubble control behind a backward-facing step using plasma actuators, (2015), ActaMechanica, 226(4), 1153-1165.
http://dx.doi.org/10.1007/s00707-014-1245-7
Benard N., Pons-Prats J., Periaux J., Bugeda G., Braud P., Bonnet J. P., Moreau E., Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach, (2016), Experiments in Fluids, 57(2), 1-17.
http://dx.doi.org/10.1007/s00348-015-2107-3
Rajasekaran J., On the flow characteristics behind a backward-facing step and the design of a new axisymmetric model for their study, Doctoral dissertation, University of Toronto, 2011.
http://dx.doi.org/10.1002/pamm.201510227
Johns M. K., Flow visualization of the airwake around a model of a DD-963 class destroyer in a simulated atmospheric boundary layer. Naval Postgraduate School Monterey, 1988.
http://dx.doi.org/10.1111/j.1559-3584.1989.tb02184.x
Zan S. J., Surface flow topology for a simple frigate shape, (2001), Canadian Aeronautics and Space Journal, 47(1), 33-43.
http://dx.doi.org/10.5589/q07-904
Tinney C. E., Ukeiley L. S., A study of a 3-D double backward-facing step, (2009), Experiments in fluids, 47(3), 427-438.
http://dx.doi.org/10.1007/s00348-009-0675-9
Healey J. V., Establishing a database for flight in the wakes of structures, (1992), Journal of Aircraft, 29(4), 559-564.
http://dx.doi.org/10.2514/3.46202
Kavousfar S., Esmaeilzadeh E., Mahdavy-Moghaddam H., Mirzaei M., Pouryoussefi S. G., Experimental study of plasma actuator effects on flow field separation bubble around blunt flat plate, (2016), Journal of Applied Fluid Mechanics, 9(1), 397-406.
http://dx.doi.org/10.18869/acadpub.jafm.68.224.24175
Hasan M. A. Z., The flow over a backward-facing step under controlled perturbation: laminar separation, (1992), Journal of Fluid Mechanics, 238, 73-96.
http://dx.doi.org/10.1017/s0022112092001642
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize