Open Access Open Access  Restricted Access Subscription or Fee Access

A Steady State Thermal Behavior Study of 3D Ball End Milling Model by Using Finite Element Method

A. Nasri(1*), M. Ben Said(2), W. Bouzid(3), O. Tsoumarev(4)

(1) Lab. de Génie de Production Mécanique et Matériaux, LGPM2, ENIS, Tunisia
(2) Lab. de Génie de Production Mécanique et Matériaux, LGPM2, ENIS, Tunisia
(3) Lab. de Génie de Production Mécanique et Matériaux, LGPM2, ENIS, Tunisia
(4) ENIT, Tunisia
(*) Corresponding author


DOI: https://doi.org/10.15866/irease.v9i2.9718

Abstract


In this paper a three-dimensional finite element model is presented to simulate the thermal behaviour of steady-state ball end milling process. In this model, the appropriate tool, chip and workpiece geometries are created by using CAD package techniques. The cutting edge, the chip shape coordinates, the shear angles and the interface contact length values, in each discrete element of the cutting edge, are determined from experimental and analytical formulations and integrated into the CAD model in order to regenerate as possible the real model geometry. The numerical simulation predicting temperature distribution in tool, chip and workpiece is performed with Abaqus code where thermal loads in primary and secondary shear zones take into account the variation of cutting conditions. The results of the numerical analysis are in agreement with cutting heat energy balance and experimental temperature measurements reported in the literature.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Ball End Milling; Temperature; Finite Element Method

Full Text:

PDF


References


C. K. Toh , Comparison of chip surface temperature between up and down milling orientations in high speed rough milling of hardened steel, Journal of Materials Processing Technology 167 (2005), 110-118.
http://dx.doi.org/10.1016/j.jmatprotec.2004.10.004

Y. Dogu, E. Alsan, N. Camescu, A numerical model to determine temperature distribution in orthogonal metal cutting, Journal of Materials Processing Technology 171(2006), 1-9.
http://dx.doi.org/10.1016/j.jmatprotec.2005.05.019

R. Komanduri, Z. B. Hou, Thermal modelling of the metal cutting process Part I- Temperature rise distribution due to shear plane heat source, International Journal of Mechanical Sciences 42(2000), 1715-1752.
http://dx.doi.org/10.1016/s0020-7403(99)00105-8

R. Komanduri, Z. B. Hou, Thermal modelling of the metal cutting process Part II- Temperature rise distribution due to frictional heat source at the tool-chip interface, International Journal of Mechanical Sciences 43(2001), 75-88.
http://dx.doi.org/10.1016/s0020-7403(99)00104-6

R. Komanduri, Z. B. Hou, Thermal modelling of the metal cutting process Part III- Temperature rise distribution due to combined effects of shear plane heat source and the tool-chip interface frictional heat source, International Journal of Mechanical Sciences 43(2001), 89-107.
http://dx.doi.org/10.1016/s0020-7403(99)00105-8

J. C. Jaeger, Moving sources of heat and the temperature at the sliding contacts, Journal of the Royal Society of New South Wales 76(1942), 203-224.

R. S. Hahn, On the temperature developed at the shear plane in the metal cutting process, Proceedings of First U. S. National Congress of Applied Mechanics, 661-666 (1951)

B. T. Chao, K. J. Trigger, Temperature distribution at the tool-chip interface in metal cutting, Transactions of the ASME 80, 1107-1121(1958)

D. J. Richardson, M. A. Keavey, F. Dailami, Modeling of cutting induced workpiece temperatures for dry milling, International Journal of Machine Tools and Manufacture 45(2005), 1-7.
http://dx.doi.org/10.1016/j.ijmachtools.2005.08.008

H. C. Shin, Y. S. Yoon, Bone temperature estimation during orthopaedic round bur milling operations, Journal of Biomechanics 39(2006), 33–39.
http://dx.doi.org/10.1016/j.jbiomech.2004.11.004

R. Komanduri, Z. B. Hou, A review of the experimental techniques for the measurement of heat and temperature generated in some manufacturing processes and tribology, Tribology International, 34(2001), 653-682.
http://dx.doi.org/10.1016/s0301-679x(01)00068-8

R. C. Dewes, E. Ng, K. S. Chua, P. G. Newton, D. K. Aspinwall, Temperature measurement when high speed machining hardened mould/die steel, Journal of Materials Processing Technology, 92-93(1999), 293-301.
http://dx.doi.org/10.1016/s0924-0136(99)00116-8

S. W. Kim, C. M. Lee, D. W. Lee, J. S. Kim, Y. H. Yung, Evaluation of the thermal characteristics in high speed ball end milling, Journal of Materials Processing Technology, 113(2001), 406-409.
http://dx.doi.org/10.1016/s0924-0136(01)00713-0

C. Ming, S. Fanghong, W. Haili, Y. Ranwei, Q. Zhenghong, Z. Shuqiao, Experimental research on the dynamic characteristics of the cutting temperature in the process of high speed milling, Journal of Materials Processing Technology, 138(2003), 468-471.
http://dx.doi.org/10.1016/s0924-0136(03)00120-1

I. Lazoglu, Y. Altintas, Prediction of tool and chip temperature in continuous and interrupted machining, International Journal of Machine Tools and Manufacture, 42(2002), 1011-1022.
http://dx.doi.org/10.1016/s0890-6955(02)00039-1

A. Abdel-Hamid, A. S. Wifi, M. El Gallab, A three dimensional finite element thermo-mechanical analysis of intermittent cutting process, Journal of Materials Processing Technology, 56(1996), 643-654.
http://dx.doi.org/10.1016/0924-0136(95)01878-6

T. Özel, T. Altan, Process simulation using finite element method - Prediction of cutting forces, tool stresses and temperatures in high speed flat end milling, International Journal of Machine Tools and Manufacture 40(2000), 713-738.
http://dx.doi.org/10.1016/s0890-6955(99)00080-2

S. L. Soo, D. K. Aspinwall, R. C. Dewes, 3D FE modeling of the cutting of Inconel 718, Journal of Materials Processing Technology, 150(2004), 116-123.
http://dx.doi.org/10.1016/j.jmatprotec.2004.01.046

O. Pantale, J. L. Bacaria, O. Dalverny, R. Rakotomalala, S. Caperaa, 2D and 3D numerical models of metal cutting with damage effects, Computer Methods in Applied Mechanics and Engineering, 193(2004), 4383-4399.
http://dx.doi.org/10.1016/j.cma.2003.12.062

Engin S., Altintas Y., Mechanics and dynamics of general milling cutters Part I: Helical end mills, International Journal of Machine Tools and Manufacture, 41(2001), 2195-2212.
http://dx.doi.org/10.1016/s0890-6955(01)00045-1

A Moufki, D. Dudzinski, A. Moulinari, M. Rausch, Thermoviscoplastic modelling of oblique cutting: forces and chip flow predictions, International Journal of Mechanical and Sciences, 42(2000), 1205-1232.
http://dx.doi.org/10.1016/s0020-7403(99)00036-3

K.A. Zvorykin, Proceedings of the Kharko Technological Institute, Ukraine, (1893)

A. Abukhshim, P. T. Mativenga, M. A. Sheikh, Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, International Journal of Machine Tools and Manufacture, 46(2006), 782-800.
http://dx.doi.org/10.1016/j.ijmachtools.2005.07.024

N. Fontaine, A. Devillez, A. Moufki, D. Dudzinski, Predictive force model for ball-end milling and experimental validation with a wavelike form machining test, International Journal of Machine Tools and Manufacture, 46(2006), 367-380.
http://dx.doi.org/10.1016/j.ijmachtools.2005.05.011

Ismail Lazoglu, Sculpture surface machining: a generalized model of bal-end milling force system, International Journal of Machine Tools and Manufacture, 43(2003), 453-462.
http://dx.doi.org/10.1016/s0890-6955(02)00302-4

P. Majumdar, R. Jayaramachandran, S. Ganesan, Finite element analysis of temperature rise in metal cutting processes, Applied Thermal Engineering, 25(2005), 2152-2168.
http://dx.doi.org/10.1016/j.applthermaleng.2005.01.006


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2019 Praise Worthy Prize