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Abstract – Satellites must endure the hostile environement during their launching to space via 

rocket; therefore, they should be exposed to the real launch conditions for ground testing, 

including all subsystems and components which should be carefully tested. Several solid-state-

ceramic batteries have been selected to be evaluated under the launch environment after been 

evaluated under the space environment, which has shown so far good results. This paper focuses 

on the physical degradation and the electrical performances of the batteries based on the 

discharge capacity, the open-circuit voltage, and charge/discharge modes. Batteries have been 

exposed to shock, then tested under vibration within different frequencies’ levels with sinewave, 

sine burst, and random. Before and after the test, the physical properties of all batteries have been 

checked, several cycles of discharge and charge have been performed to check their performances 

and survivability after the evaluation test. With 95% of capacity, batteries could demonstrate their 

ability to withstand the launch conditions successfully, they could be able to operate during 

several cycles after the test, so far, showing no degradation on their performances within the 

limits. Also, the paper is providing the main requirements and criteria for batteries’ launch 

ground testing for the small satellite project. Copyright © 2020 The Authors. 
Published by Praise Worthy Prize S.r.l.. This article is open access published under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/3.0/). 
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I. Introduction 

Even with the long history and large application of the 

Lithium-Ion batteries, since they have been the most used 

in large mobile applications: form ground such as 

cellphones and electrical vehicles, to space with 

spacecraft and space suits, they have been categorized as 

hazardous batteries [1], especially after a bad 

manipulation or working under extreme conditions [2].  

The manufacturers and users have been required to 

cover several test conditions following different 

requirements such as vibration and shock to verify their 

ability to work safely at the nominal level and good 

performances. According to the mechanical design of the 

Lithium-Ion batteries, the vibration and shock conditions 

can have a significant effect on the batteries’ 

performances. Concerning these effects, internal shorts 

may occur which can lead to venting the electrolyte with 

the possibility of firing and thermal runaway. It may lead 

to breaking the cells and leakage in the case of liquid or 

jelly batteries [3]. At the work was done by Lijun Zhang, 

it has been identified that the vibration may lead to a 

significant increase in discharge resistance [4].  

Eventually, the vibration and shock test for batteries 

became necessary due to the effect which could apport  

 
on the performances, like for the study done by Martin J. 

Brand, in which the effect of vibration and shock have 

been evaluated on two different battery structure: 

Cylindrical and Pouch, which the results have shown no 

degradation on the pouch batteries [5]. Or the work was 

done by James Michael Hooper on a multi-axis vibration 

test on the Li-Ion cylindric cells, for their electrical and 

physical evaluation [6], [7]. Then, the work was done by 

J-K Lee on the Pouch Lithium-Polymer battery in which 

the accelerated vibration and the charge-discharge 

cycling have been combined has shown good mechanical 

and electrical stability of the batteries [8]. However, 

Gunnar Kjell and Jenny Frodelius Lang have concluded 

with the comparison between different vibration test 

standard limits on the li-ion batteries and fatigue damage 

on the mechanical structure that the standards differ 

strongly and should be considered for the purpose which 

the battery will be used [9]. For the space applications, 

the primary objective is to ensure that the satellite and all 

components have passed the qualification test and free 

from workmanship defects. That why all kinds of energy 

storage including the batteries should be qualified for 

space used, otherwise, they should be evaluated and 

tested before launch to space. These are some examples 

http://creativecommons.org/licenses/by-nc-nd/3.0/
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of the qualification test done on the batteries for small 

satellites including the launch environment, in which K-

H. Park has presented the qualification test for the 

secured reliability of the Lithium-Ion batteries [10], 

moreover, the test was done by Saft and ESA for the 

qualification and life testing of the Saft Li-ion batteries 

[11]. Or the evaluation of variable cylindric cells by 

Jonghoon Kim, in which several batteries have been 

tested to evaluate their capacity and internal resistance 

[12], and another work for a battery certification for 

small satellite done by Zachary Cameron, for the Li-Ion 

cylindric cells test procedure [13]. Finally, the work was 

done by João P. Monteiro during the integration, and the 

verification approach of ISTSat-1 CubeSat is one of a 

good example for testing one kind of the solid-state-

polymer battery for space use [14]. In this paper, for the 

first time, commercial solid-state-ceramic batteries have 

been tested under vibration and shock for the space 

application use. The same kind of batteries, in which 

have never been flown in space, have been previously 

evaluated under vacuum and thermal vacuum for the low 

earth orbit, which the results have been presented in 

different paper [15], the work has been done as part of 

the long evaluation process of the solid-state-ceramic 

batteries for the in-orbit demonstration mission onboard 

the future satellite. The feature of these kinds of batteries 

compared to other conventional batteries is having a solid 

ceramic electrolyte instead of liquid (LIB: Lithium-Ion 

battery) or gel (LPB: Lithium-Polymer Battery), which 

makes it very special for the safety issues with no risk for 

flammable liquid leakage. Compared to the other solid-

state batteries, the solid ceramic electrolyte has a high 

elastic moduli makes it able to work at high temperatures 

[16], [17]. Since there are a few kinds of research and 

publications related to the vibration and the shock test for 

batteries for space use, this work is summarizing the 

main steps and procedure as a guideline for launch 

environment evaluation test which could be applied to 

not only solid-state-ceramic batteries but to all kind of 

energy storages and satellite’s sub-systems. 

The paper consists of five parts. Following the 

introduction in Section I, with the previous work have 

been discussing, Section II is about the description of the 

selected battery and the test preparation. Section III 

presents the inputs test condition required for launch 

environment, and the description in detail of the full test 

procedure and methodology. The reel test conditions 

applied on the batteries, the results and discussion are 

explained in Section IV. Finally, section V presents the 

conclusion and the future work plan. 

II. Solid-State-Battery Selection and Test 

Preparation Description 

During the launch environment test, a set of 

commercial solid-state-ceramic pouch batteries with two 

different capacities, the same kind of batteries that have 

been previously evaluated under the space environment, 

for vacuum and thermal vacuum [15], have been selected 

for the shock and the vibration ground test. The approach 

for evaluating the performance and the effect of the test 

conditions on batteries has been done following several 

discharges and charges cycles using a test board designed 

for this purpose [15]. The discharge cycles have been 

used for the discharge capacity ratio calculation, and the 

capacity before the test has been used as a reference 

capacity for comparison with the capacity after the test.  

To support the batteries during the vibration and shock 

test, a tailor-made jig has been designed, with a natural 

frequency of 2981 Hz. The performance of the jig has 

been checked with simulation for the three-axis and 

different modes using Solidworks software to confirm its 

ability to waistband the test conditions safely. 

 

 
(a) 

 

 
(b) 

 

Figs. 1. Solid-state-ceramic battery ((a) LCB01, (b) LCB02)  

selected for evaluation test [15] 

 

 
 

Fig. 2. Test board functional block diagram used for charge and 

discharge during the evolution test [15] 

 

 
 

Fig. 3. Jig natural frequency and deformation simulation 
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Fig. 4. Solid-state-ceramic batteries mounted  

on the jig before the vibration test 

 

TABLE I  

SOLID-STATE-CERAMIC BATTERIES SPECIFICATION [14] 

Lithium Ceramic Battery LCB01 LCB02 

Nominal Voltage (V) 3.75 3.75 

Nominal Capacity (mAh) 1950 1450 

Energy (Wh) 7.3125 5.4375 

Operation voltage (V) 4.35~2.75 4.35~2.75 

Size (mm) 4.5×60×105 6.3×42×88 

Weight (g) 59.5 45 

Operating temperature (°C) -20～60 -20～60 

 

Since the solid-state-ceramic batteries are planned to 

be launched on the same rocket as Ten-Koh satellite, the 

Japanese rocket H2A [18], [19], the same approach for 

the launch conditions previously adopted by Jesus 

Gonzalez for the solar modules integrated converters 

[20], as well as the Lithium-Ion battery pack for the Ten-

Koh satellite and all its subsystems [21], [22], have been 

reproduced as the input’s requirements for the launch 

environment ground test. Two different test facilities 

have been selected to satisfy the test conditions. Table II 

summarizes the specification for all the test equipment, 

first for the vibration machine which has the capability 

for testing under sine and random, and then the other 

machine used for the shock test.  

III. Launch Environment Evaluation 

Test’s Conditions and Procedure 

The purpose of the launch environment evaluation test 

is to check the ability of the solid-state-ceramic batteries 

to withstand the conditions during launch and separation 

from the rocket. The hostile shock and vibration 

conditions are applied according to the defined H2A 

rocket requirements. During the launch environment test, 

a group of the six solid-state-ceramic batteries P1X, P1Y, 

and P1Z for LCB01, P2X, P2Y, and P3Z for LCB02 have 

been tested during two steps: once the group has been 

exposed to shock condition, and then it has been tested 

under several vibration environments. 

 
TABLE II 

LIST OF THE EQUIPMENT USED DURING THE EVALUATION TEST 

Name Type Range  

Vibration machine A30 (TBD-A30) 5 Hz to 2600 Hz 

Shock machine CeNT 4000 G 

Cubed jig TCJ-B200-A30-A DC ~ 2000 Hz 

SSB Jig  Jig for SSB (Original) 2981 Hz 

 

The robustness of the solid-state-ceramic batteries has 

been evaluated carefully. Before and after each test, the 

solid-state batteries have been inspected with a visual 

check, measurement of physical property: weight, length, 

width, and thickness, then the electrical measurement of 

the open-circuit voltage and the discharge capacity, 

finally charged and discharged during several cycles. 

III.1. Shock Test 

For the high frequency from 100 to 5000 Hz, the 

shock test is needed to simulate the conditions during the 

rocket stage, fairing, and satellite separation. The six 

solid-state-ceramic batteries have been distributed in 

three different groups and then exposed to a short shock 

duration with more than 1000 G. The accelerometers 

have not been attached to the test article directly but to 

the support jig, because the battery survival is the main 

concern for the test. Thus, only the input shock spectrum 

has to be measured. 
 

 
 

Fig. 5. Solid-state-ceramic batteries selected  

for the launch environment ground evaluation 

 

 
 

Fig. 6. Solid-state-ceramic battery charged and discharged before and 

after each test. Discharge condition: constant current (CC): DC: 0.5C, 

EOD: 2.8V. Charge condition: constant-current constant-voltage 

(CC/CV): CC: 0.5C, CV: 4.35V, LCB01 EOC: 97.5mA, LCB02 EOC: 

72.5mA [15] 

 

 
 

Fig. 7. The shock test’s pickup sensors configuration for the solid-state-

ceramic batteries mounted on the shock machine 
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Fig. 8. Launch environment test flowchart summarized in fourth parts: before the test, shock, vibration, and after the test.  

The quasi-static acceleration test is carried out by replacing it with a sine burst test 

 

The inputs shock spectrums conditions for the shock 

evaluation test are the qualification level (QT) of the 

H2A rocket which is represented in Table III. Typically, 

the required shock level is between 1000 to 4000 G 

within the frequency range from 100 to 5000 Hz [23]. 

III.2. Vibration Test 

The purpose of the vibration test is to check the 

compliance of the solid-state-ceramic batteries with the 

vibration that may occur during the launch, they should 

be able to keep at least the same performances without 

degradation or malfunctions for the next operation in 

orbit. During the vibration test, the launch environment 

conditions defined as the qualification test level for 

batteries required by JAXA for the H2A rocket, have 

been reproduced as the input required for the test. The 

solid-state-ceramic batteries have been tested under low 

and high frequencies: 

 Quasi-static or sine-burst: Demonstration against the 

static acceleration in the longitudinal and lateral 

direction. The maximum quasi-static acceleration is a 

combination of the static acceleration and the low-

frequency dynamic acceleration [18]. Typically, the 

number of cycles is 3 to 5. A sine-burst is often 

selected reason for the difficulty to get the static 

acceleration in one direction. The test’s frequency 

should be lower than the item’s natural frequency; 

 Sinusoidal: It is often standardized rather than quasi-

static acceleration conditions with a low frequency 

(from 5 to 100 Hz) within 2 minutes in the 

longitudinal and lateral direction; 

 Random: For the high frequency (from 20 to 2000 

Hz), it is caused by the acoustic noise [18]. 

The solid-state-ceramic batteries have been divided 

into three jigs, each jig contained one battery from each 

sample, and it has been tested three times following three 

configurations. The following distribution allowed us to 

test the three axes for all batteries sequentially. During 

the first configuration, the solid-state-ceramic batteries 

have been mounted into the three jigs (1, 2, and 3) where 

the tested axes for batteries (x, y, and z) have followed 

respectively the vibration machine axes (X, Y, Z) in 

which the vibration will be applied (X for jig 1, Y for jig 

2, and then Z for jig 3). Then after each test’s sequence 

(sine burst, sinewave, and random), the three jigs are 

rotated, which the following tested axis for the battery 

should be respectively (Y for jig1, Z for jig2, and X for 

jig3); finally, the last rotation. Figs. 9 and Table 7 

summarize all the three configurations with the three 

rotations for each test’s sequence. 
 

TABLE III 

INPUTS TEST CONDITION FOR THE SHOCK TEST [20] 

Axis 
Frequency range 

(Hz) 

Shock Response 

Spectrum (SRS) 

Number of 

tests 

X (longitude) 100~2600 +6dB/octave 

2000G 
2 times 

Y and Z (lateral) 2600~5000 

 

TABLE IV 

SINE BURST INPUTS TESTING PARAMETERS [20], [24] 

Direction Frequency [Hz] Acceleration Excitation time [s] 

X axis 

20 

58.8 m/s0-p
2 

1 
7.5 G0-p 

Y, Z axis 
49 m/s0-p

2 

6.25 G0-p 

 

TABLE V 

SINUSOIDAL VIBRATION INPUTS TESTING PARAMETERS [20], [24] 

Direction Frequency [Hz] Level Excitation time [oct/min] 

X axis 

5-7.1 0.02 m0-p 

2 (UP and DOWN) 

7.1-100 
30.7 m/s0-p

2 

3.13 G0-p 

Y, Z axis 

5-6.3 0.02 m0-p 

6.3-100 
24.5 m/s0-p

2 

2.5 G0-p 

 

TABLE VI 

RANDOM VIBRATION INPUTS TESTING PARAMETERS [20], [24] 

Direction Frequency [Hz] Level Excitation time [s] RMS value 

3 Axis 
20-200 +3 dB/oct 

120 11 Grms 
200-2000 0.064 G2/Hz 

 

TABLE VII 

SOLID-STATE-CERAMIC BATTERIES DISTRIBUTION FOR THE THREE 

CONFIGURATIONS DURING THE THREE TEST’S SEQUENCE: SINE BURST, 

SINEWAVE AND RANDOM 

Configuration Jig 1 Jig 2 Jig 3 

#1 P1x P2x P1y P2y P1z P2z 

#2 P1y P2y P1z P2z P1x P2x 

#3 P1z P2z P1x P2x P1y P2y 
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(a) 

 

  
 

(b) 

 

Figs. 9. Solid-state-ceramic batteries’ configuration during the vibration 

test: (a) Solid-state-ceramic batteries’ configuration inside the jig 

during the three axes rotations, (b) The pickup sensors’ configuration 

for the three jigs 

III.2.1.      Vibration Test Sequence 

The following test sequence should be carried out 

during all the three rotations for the vibration test: 

1. Solid-state-ceramic batteries should be mounted 

according to the first configuration (Table VII); 

2. Starting the first sequence for the x-axis: 

 Performing x-axis Sine burst vibration; 

 Performing x-axis Sine wave vibration; 

 Performing x-axis Random vibration. 

3. Changing to the second configuration (Table VII), 

then the sequence at step 2 should be repeated for the 

y-axis; 

4. Finally, repeating the sequence at step 2 for the last 

configuration for the z-axis. 

IV. Test Result and Discussion 

Considering the vibration and shock as a circumstance 

that may happen simultaneously or consecutively, the 

results of the two evaluation tests are discussed in the 

same section. However, during the launch environment 

evaluation test, the two groups have been tested 

separately under vibration and shock. During the launch 

ground test’s result evaluation, the criteria used during 

the space evaluation for the vacuum and the thermal 

vacuum test have been used [15]. The criteria (#3 in 

Table 8) have been adopted, which are a combination of 

the two following criteria for the change in values after 

each environmental test: Such as some projects at NASA 

used the first criteria (#1 in Table VIII), others used the 

second criteria (#2 in Table VIII) for the qualification test 

for the COTS battery. 

TABLE VIII 

PASS/FAIL CRITERIA FOR THE LAUNCH ENVIRONMENT TEST 

Criteria OCV IR Mass Capacity 

#1 [25] < 0.1% < 0.1% 0.1 to 1% < 5% 

#2 [26] < 0.5% / < 0.5% < 3% 

#3 0.1 to 0.5% < 0.1% 0.1 to 0.5% 3 to 5% 

IV.1. Output Test’s Conditions 

For each group, Fig. 10 shows the reel spectrum for 

the applied shock during the test, following the same test 

condition in Table III. The pickup sensors show that the 

acceleration during the test has exceeded the upper limit, 

because of the difficulty of tuning, while it is still higher 

than the lower limit which is more important for the 

credibility of the test. However, we could say that the 

batteries were exposed to an accepted shock level test 

even if the upper limit was exceeded. During the 

vibration test for the sine burst, the pickup sensors’ 

records for CH2, CH6, and CH7; could reach the 

required limit at 7.5G with more than 10 cycles (typically 

only 3 to 5 are required), as represented in Fig. 10. CH2, 

CH6, and CH7 are respectively the records for the axes 

that have been exposed to the same sine burst excitation’s 

direction during the second configuration. For the 

sinewave, Fig. 12 shows the real condition during the test 

where all the solid-state-ceramic batteries’ jigs have been 

exposed during the low frequencies from 5 to 100 Hz.  

Finally, with the high frequencies, during the random 

vibration, Fig. 13 shows the real test spectrum generated 

during the test, following the inputs parameter required 

in Table VI, in which the batteries have been exposed to 

the random vibration between 20 and 2000 Hz within 2 

minutes.  
 

 
 

Fig. 10. Shock test pickup sensors’ outputs spectrum 

 

 
 

Fig. 11. Sine burst test pickup sensors’ outputs, Jig 1 (CH:1,2,3), Jig 2 

(CH:4,5,6), and Jig 3 (CH:7,8,9) 
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Fig. 12. Sinewave test pickup sensors’ outputs recorded for the solid-

state-ceramic batteries following the inputs’ condition 

 

 
 

Fig. 13. Random test pickup sensors’ outputs for the three jigs during 

the first configuration 

IV.2. Visual Inspection, Weight, and Open-Circuit 

Voltage Measurement 

At the end of the test with the non-functional check, 

no physical damage has been observed related to the 

fatigue, none of the batteries have shown a change in 

dimensions or weight, Table IX summarizes the weight 

measurement before and after all the launch environment 

test. Otherwise, the change of value for the OCV 

measurements shows a variation exceeding the criteria's 

limits for some batteries (LCB02) with 0.2% excess as 

shown in Table X. After comparing the measurements 

between after the shock; which the results have shown no 

significant variation in value at the order of 10-3; and 

after the vibration, it has been concluded that the change 

of the value has been induced by the vibration and not 

the shock. However, the exceeding could not be used for 

judgment until the function test has been done which will 

give the more significant interpretation. 
 

TABLE IX 

WEIGHT MEASUREMENT BEFORE AND AFTER TEST 

LCB 01#1 01#2 01#3 02#1 02#2 02#3 

Before (g) 58,32 58,38 58,18 45,44 45,56 45,46 

After (g) 58,33 58,37 58,17 45,43 45,56 45,45 

Difference (%) 0,02 0,02 0,02 0,02 0,00 0,02 

 

TABLE X 

OCV MEASUREMENT BEFORE AND AFTER TEST 

LCB 01#1 01#2 01#3 02#1 02#2 02#3 

Before (V) 4,21 4,21 4,23 4,28 4,28 4,28 

After (V) 4,19 4,21 4,21 4,25 4,25 4,25 

Difference (%) 0,48 0,00 0,47 0,70 0,70 0,70 

IV.3. Functional Test Results 

After the batteries have been exposed to the shock and 

vibration test, several charges and discharges cycles have 

been performed showing that batteries have been able to 

operate several cycles in normal conditions which means 

that the hostile environment did not affect the charge 

mode of batteries.  

As shown in Fig. 14 and Fig. 15, the constant-current 

constant-voltage (CC-CV) mode has been perfectly 

followed, starting charging with a Constant-Current (CC) 

at ~1.3 A and a voltage at ~3.4V for LCB01, and ~0.8 A 

and ~3.3 V for LCB02, the constant-current has been 

switched to the Constant-Voltage (CV) at ~4.1 to 4.2 V, 

then the charge stopped when the batteries have been 

fully charged. However, for the discharge mode and the 

capacity evaluation, Fig. 16 and Fig. 17 represent the 

result of the discharge capacity after the shock only, and 

after all the test compared to the before test discharge 

capacity.  

All batteries have been discharged at the required 

discharge current, ~0.92A for LCB01, and ~0.72A for 

LCB02, with the same discharge rate 0.5C. It has been 

noticed that the LCB01 batteries show a decrease in 

capacity so far not exceeding the limit of 3% after the 

shock and vibration only, and between 3% to 5% after all 

the test. While the only exception is for one LCB02 

battery which has shown a decrease of more than 5% 

after all the test, it may due that the battery was already 

in bad condition or manufacturing defect, the others 

LCB02 show no significant loose in capacity, less than 

3% after the shock, between 3% to 5% after the vibration 

and all the test. 
 

 
 

Fig. 14. Charge cycles for LCB01 1950 mAh, group’s samples for one 

jig after the launch evaluation test 

 

 
 

Fig. 15. Charge cycles for LCB02 1450 mAh, group’s samples for one 

jig after the launch evaluation test 
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Fig. 16. Discharge voltage vs discharge capacity ratio for LCB01 1950 

mAh. Group’s samples for one jig: before, after the shock tests, and 

after the 3 axis vibration tests 

 

 
 

 

Fig. 17. Discharge voltage vs discharge capacity ratio for LCB02 1450 

mAh. Group’s samples for one jig: before, after the shock tests, 

and after the 3 axis vibration tests 

V. Conclusion 

So far, the results from the evaluation within the 

launch environment conditions for the solid-state-

ceramic batteries show that all batteries have not been 

affected by the high vibration and the high shock level.  

The batteries could withstand the launch environment 

successfully; it can be noticed on the comparison 

between the capacity before and after the test that the 

batteries do not show any significant degradation: 83% 

of the solid-state-ceramic batteries tested could be able to 

keep their capacity with 95%, which means that all 

LCB01 and two LCB02 have passed the launch 

environment evaluation, so far within the limits. 

Additionally, they have not shown any physical 

degradation. 

The paper also summarizes the main steps for the 

battery's ground testing under the launch environment 

and some criteria which may be used for evaluation after 

the environment test.  

After the space and the launch environment ground 

evaluation test have been done successfully, the next step 

is to design a mission board for orbit demonstration of 

the solid-state-ceramic battery on a real application 

onboard a low earth orbit small re-entry satellite, in 

which the battery will be able to be tested at the real 

conditions during more than one year in orbit, and then 

recovered after re-entry for further analysis. 
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