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Abstract – The fifth-generation (5G) radio access technology promises to revolutionise 
integrated earth-space communications applications for ubiquitous, seamless and broadband 
services. The assigned sub-6 GHz and millimetre-wave 5G frequencies require the sensitivity of 
the receiver front-end subsystem(s) to detect and amplify the desired signal at a noise floor of less 
than -90 dBm for a cost-effective infrastructure deployment. This paper presents a broadband 
Monolithic Microwave Integrated Circuit (MMIC) Low-Noise Amplifier (LNA) design based on a 
0.15 µm gate length Indium Gallium Arsenide (InGaAs) pseudomorphic high electron mobility 
transistor (pHEMT) technology for 5G and fiber-integrated satellite communications applications. 
The designed three-stage 8-12 GHz LNA implements a common-source topology. The MMIC LNA 
subsystem performance demonstrates an industry-leading in-band gain response of 40 dB; a noise 
figure of 1.0 dB; and a power dissipation of 43 mW. For a constant bandwidth receiver, the 
sensitivity changes by approximately 1.5 dB over the operating satellite signal frequency. 
Similarly, for a variable bandwidth receiver, the sensitivity changes by approximately 1.5 dB over 
the channel bandwidth. Moreover, the sensitivity margin of the designed LNA is 40 dB and this 
holds a great promise for real-time radio access component-level reconfiguration applications. 
Copyright © 2020 The Authors. 
Published by Praise Worthy Prize S.r.l.. This article is open access published under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/). 
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Nomenclature 
3G Third generation 
4G Fourth generation 
5G Fifth generation 
BER Bit Error Ratio 
CNR Carrier-to-Noise Ratio 
ENP Effective Noise Power 
ETRI Electronics and Telecommunications 

Research Institute 
fd Resonant frequency 
FISCA Fiber-Integrated Satellite Communication 

Architecture 
fmax Maximum oscillation frequency 
fT Gain frequency 
InGaAs Indium gallium arsenide 
LNA Low-Noise Amplifier 
LNB Low-Noise Block 
LO Local Oscillator 
MDS Minimum Detectable Signal 
MER Modulation Error Ratio 
MMIC Monolithic Microwave Integrated Circuit 
NF Noise Figure 
pHEMT Pseudomorphic high electron transistor 
PLL Phase-Locked Loop 
Pr Received power 

RATs Radio Access Technologies 
RoF Radio-over-Fiber 
SNR Signal-to-Noise Ratio 
UE User Equipment 
VCO Voltage-Controlled Oscillator 
Vds Drain-source voltage 
Vgs Gate-source voltage 

I. Introduction 
 

The increasing global demand for broadband data, 
voice and video services has led to the development of 
advanced Radio Access Technologies (RATs) such as the 
5G communication standard [1]. The 5G RAT 
implementation across the niche wireless communication 
and vertical industries/sectors is constrained by the 
availability of reliable physical layer devices such as the 
Monolithic Microwave Integrated Circuit (MMIC) Low 
Noise Amplifier (LNA). Integrated earth-space 
heterogeneous communication infrastructure requires 
adaptive space assets [2], [3] and advanced radio access 
technologies ecosystem (such as 5G). Integrated 5G-
satellite systems are required to deliver space-enabled 
reliable transmission [3] of ultra-low latency [4], [5], 
massive machine-to-machine (M2M) and broadband 
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V. Conclusion 
A three-stage X-band MMIC low-noise amplifier has 

been designed using the common source topology. The 
pHEMT process technology was utilized, and the 
performance metrics of the fiber low-noise block front-
end satisfies the  requirements for fiber-integrated 
satellite communication applications. The amplifier 
stability up to the cut-off frequency is greater than 2 and 
meets the fabrication defects standards for zero 
oscillation performance. The measured receiver 
parameters reveal an average carrier-to-noise ratio of 12 
dB; and sensitivities of -84 dBm and -124 dBm at 
bandwidths of 50 MHz and 5 kHz respectively. The X-
band sensitivity response to channel bandwidth 
variations is bandwidth and operating frequency-
dependent, with a low noise figure of 0.9 dB. Hence, this 
reduces system integration complexity, deployment and 
cost of user and base station equipment. The reported 
findings in this paper have revealed the huge 
communication improvements that integrated advanced 
radio access technologies (such as 5G) and satellite 
communication would add to the global connectivity 
infrastructure and services through capability-based 
reconfigurable radio communication subsystems. The 
future research direction of this novel work will consider 
the integration of the LNA with a monolithic 
reconfigurable switch for multi-frequency adaptive 
capabilities. 
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