Fatigue Life Modeling for Elastomeric Materials: a Review


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In recent years, influence of elastomer and rubber has increased significantly in engineering applications. Many factors provide long term durability and mechanical fatigue including nucleation and growth of cracks in the rubber is the first attention. Fatigue life prediction on the rubber parts was essential in relation to the extension of warranty period of the automotive components. A design of rubber parts versus fatigue failure is one of the serious topics to check the failures during the operation. To describe the subject efficiently and commercially, engineers require to model and design for mechanical fatigue in the manufacture process. This study presents a review of fatigue life failure criteria, fatigue damage behavior for elastomers and results of the attempts on predicting the experimental results of fatigue life rubber components
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Rubber; Elastomer; Fatigue Life; Rubber Failure Criteria

Full Text:

PDF


References


W. D. Kim, H. J. Lee, J. Y. Kim, S. K. Koh, Fatigue life estimation of an engine rubber mount, International Journal of Fatigue, Vol. 26, pp. 553-560, 2004.

W. V. Mars, Cracking energy density as a predictor of fatigue life under multiaxial conditions, Rubber Chemistry and Technology, Vol. 75, pp. 1-17, 2002.

A. Y. Coran, Elastomers, in C. A. Harper (Ed), Handbook of plastics technologies, (New York McGraw-Hill Companies 2006, pp. 4.1-4.111).

K. Nagdi, Rubber as an engineering material : Guidline for users, (Munich, Germany: Hanser publisher, 1993).

G. Chagnon, G. Marckmann, E. Verron, A comparison of the Hart-Smith model with Arruda-Boyce and Gent formulations for rubber elasticity, Rubber Chemistry and Technology, Vol. 77, pp. 724-735, 2004.

B. Näser, M. Kaliske, M. André, Durability simulations of elastomeric structures, in P. E. Austrell and L. Kari (Ed), Constitutive Models for Rubber IV, ( A. A. Balkema Publishers, 2005, pp. 45-50).

I. J. Whibley, E. Cutts, M. Philllip, D. Pearce, Mechanical characterization and modeling of elastomers based on chemical composition, in P. E. Austrell and L. Kari (Ed), Constitutive Models for Rubber IV, ( A. A. Balkema Publishers, 2005, pp. 437-441).

A. Andriyana, E. Verron, Effect of the hysteretic response of elastomers on the fatigue life, in P. E. Austrell and L. Kari (Ed), Constitutive Models for Rubber IV, ( A. A. Balkema Publishers, 2005, pp. 31-36).

W. V. Mars, A. Fatemi, Factors that affect the fatigue life of rubber: A literature survey, Rubber Chemistry and Technology, Vol. 76, pp. 391-412, 2004.

E. Verron, J. B. Le Cam, L. Gornet, A multiaxial criterion for crack nucleation in rubber, Mechanics Research Communications, Vol. 33, pp. 493–498, 2006.

W. V. Mars, A. Fatemi, A literature survey on fatigue analysis approaches for rubber, International Journal of Fatigue, Vol. 24, pp. 949-961, 2002.

W. V. Mars, A. Fatemi, A novel specimen for investigating the mechanical behavior of elastomers under multiaxial loading conditions, Society for Experimental Mechanics, Vol. 44, pp. 136-146, 2004.

J. H. Choi, H. J. Kang, H. Y. Yeong, T. S. Lee, S. J. Yoon, Heat aging effects on the material property and the fatigue life of vulcanized natural rubber, and fatigue life prediction equations, Journal of Mechanical Science and Technology, Vol. 19, pp. 1229-1242, 2005.

C. S. Woo, W. D. Kim, Heat-aging effects on the material properties and fatigue life prediction of vulcanized natural rubber, Journal of Materials, Vol. 2, pp. 7-12, 2006.

F. E. Ngolemasango, M. Bennett, J. Clarke, Degradation and life prediction of a natural rubber engine mount compound, Journal of Applied Polymer Science, Vol. 110, pp. 348-355, 2008.

R. J. Harbour, A. Fatemi, W. V. Mars, Fatigue life analysis and predictions for NR and SBR under variable amplitude and multiaxial loading conditions, International Journal of Fatigue, Vol. 30, pp. 1231-1247, 2008.

A. Stevenson, R. P. Campion, Durability, in A. N. Gent (Ed), Enginneing with rubber, (New York Hanser publishers, 1992, pp. 169-207).

C. S. Woo, W. D. Kim, J. D. Kwon, A study on the material properties and fatigue life prediction of natural rubber component, Materials Science and Engineering A pp. 376-381, 2008.

J. Zhao, Q. Li, X. Shen, Finite Element Analysis and Structure Optimization for Improving the Fatigue Life of Rubber Mounts, Journal of Macromolecular Science, Part A, Vol. 45, pp. 542 — 547, 2008.

W. V. Mars, A. Fatemi, Multiaxial stress effects on fatigue behavior of filled natural rubber, International Journal of Fatigue, Vol. 28, pp. 521-529, 2006.

C. Feichter, Z. Major, R. W. Lang, Influence of crack tip sharpness and radius on the strain distribution in rubbers analyzed by finite element simulation and experiments, in P. E. Austrell and L. Kari (Ed), Constitutive Models for Rubber IV, ( A.A.Balkema Publishers, 2005, pp. 89-95).

E. Ostoja-Kuczynski, P. Charrier, E. Verron, L. Gornet, G. Marckmann, Influence of mean stress and mean strain on fatigue life of carbon black filled natural rubber, in P. E. Austrell and L. Kari (Ed), Constitutive Models for Rubber IV, ( A.A.Balkema Publishers, 2005, pp. 15-21).

W. V. Mars, A. Fatemi, Fatigue crack nucleation and growth in filled natural rubber, Fatigue Fract Engng Mater Struct, Vol. 26, pp. 779-789, 2003.

A. Andriyana, E. Verron, Prediction of fatigue life improvement in natural rubber using configurational stress, International journal of solids and structures, Vol. 44, pp. 2079-2092, 2007.

E. Verron, A. Andriyana, Definition of a new predictor for multiaxial fatigue crack nucleation in rubber, Journal of the mechanics and physics of solids, Vol. 56, pp. 417-443, 2008.

R. Marissen, R. F. M. Lange, S. Bibels, P. Hinkel, H. Nowack, Scaning electron microscope visualisation of crack initiation and propagation under static and fatigue loading on thermoplastic elastomers, International Journal of Fatigue, Vol. 27, pp. 71-84, 2005.

S. V. Hainsworth, An environmental scanning electron microscopy investigation of fatigue crack initiation and propagation in elastomers, Polymer Testing, Vol. 26, pp. 60-70, 2007.

E. Ostoja-Kuczynski, P. Charrier, E. Verron, G. Marckmann, L. Gornet, G. Chagnon, Crack initiation in filled natural rubber: experimental database and macroscopic observations, in J. Busfield and A. Muhr (Ed), Constitutive models for rubber III, ( A. A. Balkema Publishers, 2003, pp. 41-47).

M. D. Ellul, Mechanical fatigue, in A. N. Gent (Ed), Engineering with rubber, (New York Honser publishers, 1992, pp. 131-170).

C. Timbrell, M. Wiehahn, G. Cook, A. H. Muhr, Simulation of crack propagation in rubber, in J. Busfield and A. Muhr (Ed), Constitutive models for rubber III, ( A. A. Balkema Publishers, 2003, pp. 11-20).

J. Royo, Fatigue testing of rubber materials and articles, Polymer Testing, Vol. 11, pp. 325-344, 1992.

P. Charrier, E. Ostoja Kuczynski, E. Verron, G. Marckmann, L. Gornet, G. Chagnon, Theoretical and numerical limitations for the simulation of crack propagation in natural rubber components, in J. Busfield and A. Muhr (Ed), Constitutive Models for Rubber III, ( A. A. Balkema Publishers, 2003, pp. 3-10).

I. C. Papadopouos, H. Liang, J. J. C. Busfield, A. G. Thomas, Prediction cyclic fatigue crack growth using finite elemente analysis techniques applied to three-dimensional elastomeric components, in J. Busfield and A. Muhr (Ed), Constitutive Models for Rubber III, ( A. A. Balkema Publishers, 2003, pp. 33-39).

G. J. Lake, A. G. Thomas, Strength, in A. N. Gent (Ed), Engineering with rubber, (New York Hanser publishers, 1992, pp. 95-127).

K. Legorju-jago, C. Bathias, Fatigue initiation and propagation in natural rubber and synthetic rubbers, International Journal of Fatigue, Vol. 24, pp. 85-92, 2002.

R. Brown, Physical testing of rubber, (USA: Springer, 2006).

W. V. Mars, A. Fatemi, Multiaxial fatigue of rubber: Part 1: equivalence criteria and theoretical aspects, Fatigue Fract Engng Mater Struct, Vol. 28, pp. 515- 522, 2005.

W. V. Mars, A. Fatemi, The correlation of fatigue crack growth rates in rubber subjected to multiaxial loading using continuum mechanical parameters, Rubber Chemistry and Technology, Vol. 80, pp. 169-182, 2007.

B. Wang, L. Hongbing, G. Kim, A damage model for the fatigue life of elastomeric materials, Mechanics of Materials, Vol. 34, pp. 475-483, 2002.

J. Yan, "A numerical and experimental investigation of the machinability of elastomers," vol. PhD. USA: North Carolina State University, 2005.

M. J. Garcia Ruiz, L. Y. Suarez Gonzalez, Comparison of hyperelastic material models in the analysis of fabrics, International Journal of clothing science and technology, Vol. 18, pp. 314-325, 2006.

G. Markmann, E. Verron, Comparison of hyperelastic models for rubber-like materials, Rubber Chemistry and Technology Vol. 79, pp. 835-858, 2006.

D. J. Seibert, N. Schöche, Direct comparison of some recent rubber elasticity models, Rubber Chemistry and Technology, Vol. 73, pp. 366-384, 2000.

M. C. Boyce, E. M. Arruda, Constitutive models of rubber elasticity: A review, Rubber Chemistry and Technology, Vol. 73, pp. 504-523, 2000.

E. Pucci, G. Saccomandi, A note on the Gent model for rubber-like materials, Rubber Chemistry and Technology, Vol. 75, pp. 839-851, 2002.

F. J. H. Peeters, M. Küssner, Material Law Selection in the Finite Element simulation of rubber-like materials and its practical application in the industrial design process, in A. Dorfmann and A. Muhr (Ed), Constitutive models for rubber, ( A. A. Balkema Publishers, 1999, pp. 29-36).

G. Markmann, E. Verron, Efficiency of hyperelastic models for rubber-like materials, in P. E. Austrell and L. Kari (Ed), Constitutive models for rubber IV, ( A. A. Balkema Publishers, 2005, pp. 375-380 ).

M. Forni, A. Martelli, A. Dusi, Implementation and validation of hyperelastic finite element models of high damping rubber bearings, in A. Dorfmann and A. Muhr (Ed), Constitutive models for rubber, ( A. A. Balkema Publishers, 1999, pp. 237-247).

S. Sharma, Critical comparison of popular hyper-elastic material models in design of anti-vibration mounts for automotive industry through FEA, in J. Busfield and A. Muhr (Ed), Constitutive models for rubber III, ( A. A. Balkema Publishers, 2003, pp. 161-167).

I. Raoult, C. Stolz, M. Bourgeois, A constitutive model for the fatigue life prediction of rubber, in P. E. Austrell and L. Kari (Ed), Constitutive models for rubber IV, ( A. A. Balkema Publishers, 2005, pp. 129-134).

M. Achenbach, J. Duarte, A finite element methodology to predict age-related mechanical properties and performance changes in rubber components, in J. Busfield and A. Muhr (Ed), Constitutive models for rubber III, ( A. A. Balkema Publishers, 2003, pp. 59-67).

W. E. Mahmoud, S. A. Mansour, M. Hafez, M. A. Salam, On the degradation and stability of high abrasion furnace black (HAF)/acrylonitrile butadiene rubber (NBR) and high abrasion furnace black (HAF)/graphite/acrylonitrile butadiene rubber (NBR) under cyclic stress strain, Polymer Degradation and Stability, Vol. 92, pp. 2011-2015, 2007.

J. H. Kim, H. Y. Jeong, A study on the material properties and fatigue life of natural rubber with different carbon blacks, International Journal of Fatigue, Vol. 27, pp. 263-272, 2005.

W. V. Mars, A. Fatemi, Multiaxial fatigue of rubber: Part II: experimental observations and life predictions, Fatigue Fract. Eng. Mater Struct., Vol. 28, pp. 523-538, 2005.

F. Abraham, T. Alshuth, S. Jerrams, The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallizing elastomers, Materials and Design Vol. 26, pp. 239-245, 2005.

F. Abraham, T. Alshuth, S. Jerrams, The dependence on mean stress and stress amplitude of the fatigue life of elastomers,http://www.dikautschuk.de/angebot/doku/publi/134.pdf (accessed on 29 th May 2009).

N. Saintier, G. Cailletaud, R. Piques, Crack initiation and propagation under multiaxial fatigue in a natural rubber, International Journal of Fatigue, Vol. 28, pp. 61-72, 2006.

N. Saintier, G. Cailletaud, R. Piques, Multiaxial fatigue life prediction for a natural rubber, International Journal of Fatigue, Vol. 28, pp. 530-539, 2006.

A. Zine, N. Benseddiq, M. N. Abdelaziz, N. A. Hocine, D. Bouami, Prediction of rubber fatigue life under multiaxial loading, Fatigue Fract Engng Mater Struct, Vol. 29, pp. 267-278, 2006.

W. V. Mars, A. Fatemi, A phenomenological model for the effect of R ratio on fatigue of strain crystallinzing rubbers, Rubber Chemistry and Technology, Vol. 76, pp. 1241-1258, 2003.

W. V. Mars, J. G. R. Kingston, A. Muhr, S. Martin, K. W. Wong, Fatigue life analysis of an exhaust mount, in P. E. Austrell and L. Kari (Ed), Constitutive models for rubber IV, ( A.A.Balkema Publishers, 2005, pp. 23-29).

Y. Wang, W. Yu, X. Chen, L. Yan, Fatigue life prediction of vulcanized natural rubber under proportional and non-proportional loading, Fatigue Fract Engng Mater Struct, Vol. 31, pp. 38-48, 2008.

W. V. Mars, A. Fatemi, Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading, Journal Mater Sci, Vol. 41, pp. 7324-7332, 2006.

W. V. Mars, A. Fatemi, Analysis of fatigue life under complex loading, revisiting Cadwell, Merrill, Sloman, and Yost, Rubber Chemistry and Technology, Vol. 79, pp. 589-601, 2006.

E. Verron, Prediction of fatigue crack initiation in rubber with the help of configurational mechanics, in P. E. Austrell and L. Kari (Ed), Constitutive Models for Rubber IV, ( A. A. Balkema Publishers, 2005, pp. 3-8).


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize