Synthesis of Proton Exchange Membranes from Vinyl Acetate and Acrylic Ester for Fuel Cell

Alvaro Realpe(1*), Nayilis Mendez(2), María T. Acevedo(3)

(1) Chemical Engineering Department of University of Cartagena, Colombia
(2) Chemical Engineering Department of University of Cartagena, Colombia
(3) Chemical Engineering Department of University of Cartagena, Colombia
(*) Corresponding author


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In this work, proton exchange membranes are synthesized from blend of copolymer of vinyl acetate - acrylic ester and styrene - acrylic ester. Initially the copolymer was modified by a sulfonation process, and then the membranes were made using the casting technique. The water uptake and ion exchange capacity tests were evaluated to characterize membranes. The incorporation of sulfonic groups in the polymeric material increases water uptake until 56.8% and ion exchange capacity until 0.68 meq/ g. These results suggest that the blend of copolymers of vinyl acetate - acrylic ester and styrene - acrylic ester could be an alternative for preparation of membrane for fuel cell
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Proton Exchange Membrane; Sulfonation; Vinyl Acetate - Acrylic Ester

Full Text:

PDF


References


U. Cano, Las celdas de combustible: Verdades sobre la generación de electricidad limpia y eficiente vía electroquímica, Boletín del Instituto de Investigaciones Eléctricas 23 (1999) 208 -215.

J. Zaidi, and T. Matsura, Polymer membranes for fuel cells (Springer, 2009).

A. Mishra, S. Bose, T. Kuila, N. Kim, and J. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Polymer Science 37 (2012) 842-869.

J. Mosa, Membranas inorgánicas e híbridas orgánico - inorgánicas para pilas de combustibles de intercambio de protones (PEMFC). PhD. Ciencias Químicas. thesis, Universidad Autónoma de Madrid, Madrid, España, Jan. 2008.

F. González, and R. Vargas, (2011). Estudio de las propiedades termodinámicas y eléctricas de materiales compuestos poliméricos basados en el poli(vinil alcohol) (PVA) + H3PO4 + TiO2, Revista Iberoamericana de Polímeros 12 (2011) 64-75.

J. Ramirez, Funcionalización del copolímero de acetato de vinilo (VAc) – Acrilato de butilo (BuA) con el monómero bifuncional isocianato de 3 – isopropenil dimetilbencilo (TMI), M. Ciencias Químicas con especialidad en Química Orgánica. thesis, Universidad Autónoma de Nuevo León, Nuevo León, México, Jun. 2002.

F. Billmeyer, Ciencia de los polímeros (Reverte, S.A., 2004).

N. Méndez, and E. Toscano, Evaluación de una membrana de intercambio protónico obtenida a partir de copolímero de éster acrílico y estireno para su aplicación en una celda de combustible, Ing. Quimica, thesis, Universidad de Cartagena, Cartagena, Colombia, Jun, 2013.

T. Erdogan, E. Erdal, T. Inan, and B. Birkan, Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell, Journal of Membrane Science 344 (2009) 172-181.

H. Makowski, R. Lundberg, and G. Singhal, (1975). U.S. Patente 3,870,841, Mar. 11, 1975.

T. Yang, Poly(vinyl alcohol)/sulfated β-cyclodextrin for direct methanol fuel cell applications, International Journal of Hydrogen Energy, 34 (2009) 6917-6924.

J. Wang, S. Jiang, H. Zhang, W. Lv, X. Yang, and Z. Jiang, Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres, Journal of Membrane Science, 364 (2010) 253-262.

J. Wang, S. Jiang, H. Zhang, W. Lv, X. Yang, Z. Jiang, Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres, Journal of Membrane Science, vol. 364, pp. 253-262, Aug. 2010.

V. Shahi, Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)- silica polyelectrolyte composite membranes for fuel cells, Solid State Ionics, 177 (2007) 3395-3404.

J. Zaidi, Polymer sulfonationa versatile route to prepare proton-conducting membrane material for advanced technologies, The Arabian Journal for Science and Engineering, 28 (2003) 183-194.

Z. Bai, M. Durstock, and T. Dang, Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells, Journal of Membrane Science (2006) 508-516.

N. Gunduz, Synthesis and characterization of sulfonated polyimides as proton exchange membranes for fuel cells. Ph.D. Químicas. thesis, Virginia Polytechnic Institute and State University, Virginia, United States, Feb. 2001

K. Jiaoa, and X. Li, Water transport in polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science 37 (2011) 221-291.

Z. Songjun, Y. Lei, Y. Sijia, W. Guoliang, X. Yuanqin, and X. Weijian, Amphibious hybrid nanostructured proton exchange membranes. Journal of Membrane Science 367 (2011) 78-84.

J. Yang, Q. Li, J. Jensen, C. Pan, L. Cleemann, N. Bjerrum, and R. He, Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 205, (2012) 114-121.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize