Synthesis of Proton Exchange Membranes from Natural Rubber


(*) Corresponding author


Authors' affiliations


DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)

Abstract


In this work proton exchange membranes were synthesized from natural rubber. This polymer was modified by the process of sulfonation, vulcanization and addition of titanium dioxide as inorganic load. The membranes characterization was evaluated by water uptake, ion exchange capacity and stress–strain tests. Sulfonated membranes have highest water uptake due to the introduction of sulfonic groups in the polymer structure. Meanwhile, ion exchange capacity increases with increasing of titanium dioxide (TiO2) from 0.16 to 0.23 meq/g¬. Moreover, the loaded membranes with titanium dioxide have lowest water uptake due to the TiO2 behavior as a ceramic filler that decreased the membrane free volume and its swelling capacity. The above results indicate natural rubber is a good alternative for application on fuel cells
Copyright © 2014 Praise Worthy Prize - All rights reserved.

Keywords


Natural Rubber; Proton Exchange Membrane; Sulfonation; Vulcanization

Full Text:

PDF


References


A. Midilli, M. Ay, I. Dincer, MA. Rosen, On hydrogen and hydrogen energy strategies, I: current status and needs, Renew Sustain Energy Rev 9 (2005) 255-71.

A. Midilli, M. Ay, I. Dincer, MA. Rosen, On hydrogen and hydrogen energy strategies, II: future projections affecting global stability and unrest, Renew Sustain Energy Rev 9 (2005) 273-87.

A. Del Valle, N. Girón, R. Gallardo, A. Díaz, J. Sebastia, Diseño, Fabricación y Evaluación de una Celda de Combustible Tipo PEM, para el Sector Automotriz. 6to. CongresoNacional de Mecatrónica. San Luis Potosi, Mexico, Nov 8-10(2007).

B. Huiping, W. Jiali, Ch. Shouwen, H. Zhaoxia, G. Zhilin, Preparation and properties of cross-linked sulfonated poly(arylene ether sulfone)/sulfonated polyimide blend membranes for fuel cell application, Journal of Membrane Science 350 (2010) 109–116.

S. Siracusano n, V.Baglio, F.Lufrano, P.Staiti, A.S.Aricò, Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane, Journal of Membrane Science 448 (2013) 209 – 214.

F. Fernández, Síntesis y caracterización de membranas hibridas órgano-inorgánicas para su uso en pilas de combustible. Tesis de pregrado, Universidad Politécnica de Valencia, Valencia 2008.

K.S. Yoon, et al., Synthesis and properties of densely sulfonated polyketones (sPKs) with rigid backbone structure for PEM fuel cell application, Journal of Industrial and Engineering Chemistry (2013), http://dx.doi.org/10.1016/j.jiec.2013.10.006

Lee KH, et al., Structural influence of hydrophobic diamine in sulfonated poly(sulfide sulfone imide) copolymers on medium temperature PEM fuel cell, Polymer (2013), http://dx.doi.org/10.1016/j.polymer.2013.09.030

Y. Elabd, E. Napadensky, Sulfonation and characterization of poly(styrene-isobutylene-styrene) triblock copolymers at high ion-exchange capacities, Polymer 45 (2004) 3037 – 3043

J. Mark, B. Erman, M. Roland, Science and Technology of Rubber (Elsevier Academic Press, 2013, pp. 343).

K. Sub Shin, E. Mi Choi, T. Sung Hwang Preparation and characterization of ion-exchange membrane using Sty/HEA/LMA terpolymer via post-sulfonation, Desalination 263 (2010) 151–158.

S. Zhong, C. Liu, H. Na, Preparation and properties of UV irradiation-induced crosslinked sulfonated poly(ether ether ketone) proton exchange membranes. Journal of Membrane Science 326 (2009) 400–407.

V. Shahi, Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)- silica polyelectrolyte composite membranes for fuel cells, Solid State Ionics 177 (2007) 3395–3404.

N. Zhang , H. Liu, j. Li, Z. Xia, Preparation and properties of SPAES-TiO2, hybrid membranes for direct methanol fuel cell.Chinese Journal of Polymer Science 27 (2009) 895−902.

T. Jian-hua, G. Peng-fei, Z. Zhi-yuan, L. Wen-hui, S. Zhong-quiang, Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. International Journal of Hydrogen Energy 33 (2008) 5686 – 5690.

Y. Devrim, S. Erkan, N. Bac, I. Eroglu, Preparation and characterization of sulfonated polysulfone/titanium dioxide composite membranes for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 34 (2009) 3467 - 3475.

H. Salmah, H. Ismail, A. Abu Bakar, The Effects of Dynamic Vulcanization and Compatibilizer on Properties of Paper Sludge-Filled Polypropylene/Ethylene Propylene Diene Terpolymer Composites. Journal of Applied Polymer Science, 107 (2008) 2266–2273.

D. Man, S. Yoon, et al., Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. Journal of Membrane Science 446 (2013) 212–219.

H. Dai, R. Guan, C. Li, J. Liu, Development and characterization of sulfonated poly(ether sulfone) for proton exchange membrane materials. Solid State Ionics 178 (2007) 339–345.

S. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications. International journal of hydrogenenergy 35 (2010) 9349 - 9384.

J. Park, J. Koh, D. Roh, Y. Shul, J. Kim, Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles. International Journal of Hydrogen Energy 36 (2011) 1820 - 1827.

K. Romero, A. Realpe, M. Acevedo, Synthesis and characterization of proton exchange membranes from blend of unsaturated polyester resin and natural rubber. International Journal of Engineering Trends and Technology 4 (2013) 4005-4009.

DuPont Nafion PFSA Membranes: N 115, N 117, N 1110 data sheet”, DuPont, Wilmington, United States of America.

F. Barroso-Bujans, R. Verdejo, A. Lozano, J. Fierro and M. Lopez-Manchado, Sulfonation of vulcanized ethylene–propylene–diene terpolymermembranes, Acta Materialia 56 (2008) 4780 – 4788.

Z. Yang, D. Coutinho, D. Yang, K. Balkus,J. Ferraris, Proton-conducting membranes based on HTFSI-doped PEI/SiO2 nanocomposites, Journal of Membrane Science 313 (2008) 91–96.


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize