Zeolite Production from Fly Ashes of the Martín Corral Thermoelectric

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


Fly ashes are the mineral residues derived from coal combustion in thermoelectric plants. They are composed of a silica and aluminum reactive matrix that turns the ashes into raw material to elaborate zeolites. Zeolite synthesis is carried out in alkaline media where the structure of the fly ash compounds is reorganized based on the hydrothermal conditions (temperature pressure, pH, time) to spark the growth of crystals whose final product is the zeolitic material. In this study, the production of type A zeolites from fly ashes is explored. This raw material was characterized by doing XRD, TGA and BET tests on the surface area; similarly, the effect of washing on the fly ash properties was evaluated; once this stage was finished, a simple experimental setup for zeolite synthesis was used to establish the minimum temperature (90°), pH (10) and reaction time (<3 HOURS). Finally, the obtained material was subject to XRD and textural analysis.
Copyright © 2014 Praise Worthy Prize - All rights reserved.


Fly Ashes; Zeolites; Synthesis; Isotherm

Full Text:



T Ciencia al día: Resurgiendo de las Cenizas. AUPEC Universidad del Valle. [En línea]. Recuperado14 de Febrero de 2007. Disponible: http://aupec.univalle.edu.co/informes/junio97/boletin40/cenizas.html

EMGESA S.A. ESP, Memoria Anual 2004: Gestión de Producción. (Servi-flash Impresores, 2004). p. 23, 27-28.

J. C. Umaña Peña. (2006, Jul.). Síntesis de Zeolitas a partir de Cenizas Volantes de Centrales Termoeléctricas de Carbón. VirtualPRO. [En Línea]. (54), 16. Disponible: http://www.revistavirtualpro.net/vpnew/index.htm

L. Smart, E. Moore, Química del Estado Sólido: una introducción. (Wesley, Delaware, 1995). p. 207.

F. Machados, C. M. López, Tamices Moleculares. 1er. Curso Iberoamaericano. (Técnicas Interep, 1993). p. 1-30.

C. H. Bartholomew, R.J. Farrauto, Fundamentals of Industrial Catalytic Processes (Wiley, New York, 2006) p. 68-79.

P. Bosch, I. Schifter, La zeolita: una piedra que hierve. (Fondo de Cultura, México, 1997). p. 9-48.

K.S. Hui, C.Y.H. Chao, Micropor. Mesopor. Mater. 88 (2006). p. 147.

Aspectos Prácticos de la Difracción de Rayos X. [En Línea]. Recuperado 9 de Marzo de 2007. Disponible: http://www.uniovi.es/qcg/DetEst/ Tema4-AAP.pdf .

R. J. Angel et al., American Mineralogist. Vol 76, (1991). p. 332-342.

V. Pecharsky, P. Zavalij, Fundamentals of Powder Diffraction and Structure Characterization of Materials. New York: Springer. 2005. pp. 342-343.

H. L. Chang, W. H. Shih, Ind. Eng. Chem. Res. Vol. 39, (2000); p. 4187.

R. García Lovera, Caracterización Textural de Adsorbentes [en línea]. Recuperado 14 de Mayo de 2007. Disponible http://www.ua.es/grupo/lma/web%20cyted/publicaciones/cyted%20librotallerV/I.3%20Rafael%20Garcia(PDF).pdf

TEMA 4: Adsorción de gases por sólidos. [en línea]. Recuperado 13 de Mayo de 2007. Disponible:http://www.uco.es/~iq2sagrl/TranspAdsGases.pdf

X. Querol et al., Int. J. Coal Geol. 50 (2002) 414-419.

S. Fuentes, G. Díaz, Catalizadores: ¿La piedra filosofal del siglo XX?. (Fondo de Cultura, 1997). p. 57-58.

E. G. Derouane, A Molecular View of Heterogeneous Catalysis (De Boeck Université, París, 1998) p. 7.

C. S. Cundy, P. A. Cox, Micropor. Mesopor. Mater. 82 (2005) pp. 5-9.

C. Perego, P. Villa, Catal. Today 34 (1997). pp. 285,294.

M. M. J. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites. (Elsevier, New York, 2001).pp. 176-177,217-218.

Annual Book of ASTM Standards, D 5357: Determination of relative crystallinity of Zeolite Sodium A by X-ray diffraction. (ASTM International, 2003).

R. M. Milton, US Patent 2,882,243 (1959).

R.L.Wadilnger, US Patent 3,375,205 (1968).

D. Wu et al., Int. J. Miner. Process 80 (2006) pp. 269-271.

X. Querol et al., Fuel 76 (1997). pp. 794-796.

C. G. Hill, An introduction to chemical engineering kinetics & reactor design. (Wiley, New York, 1977). pp. 259-261.

V. S. Somerset et al., Fuel 84 (2005) p. 2325.

K.S. Hui, C.Y.H. Chao, Journal of Hazardous Materials B137 (2006). pp. 403, 405.

D. M. Moore, R. C. Reynolds, X-Ray diffraction and the identification and analysis of clay minerals. (Oxford, New York, 1989). pp. 226-231.

M. Inada et al., Fuel 84 (2005). pp. 301-303.

M. T. Weller, S. E. Dann, Solid State & Materials Science 3 (1998) pp. 137-139.

X. Querol et al., Fuel 80 (2001).pp. 860-864.

G. G. Hollman et al., Fuel 78 (1999). pp. 1128-1229.

G. Steenbruggen, G. G. Hollman, J. Geochem. Explor. 62 (1998). pp. 306-308.

A. Molina, C. Poole, Minerals Engineering 17 (2004) 168-172.

G. Leofanti et al., Catal. Today 34 (1997). pp. 307-327.

D. S. Coombs et al., Canadian Mineralogist 35 (1997). pp. 1573-1574.

C. Kosanovic et al., CCACAA 74 (2001). pp. 195-198.

L. Liu et al., Micropor. Mesopor. Mater. 94 (2006). pp. 304-308.

H. Tanaka et al., Fuel 85 (2006). p. 1330- 1333.

A. Srinivasan, M. W. Grutzeck, Environ. Sci. Technol. 33 (1999). p. 1466-1467.

E. Otal et al., Fuel 84 (2005). p. 1440-1443.


  • There are currently no refbacks.

Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize