Surface Effect on Ions Distributions in Nanoporous Media, a Molecular Dynamics Study

(*) Corresponding author

Authors' affiliations

DOI's assignment:
the author of the article can submit here a request for assignment of a DOI number to this resource!
Cost of the service: euros 10,00 (for a DOI)


Nanopore scale surface has become widely recognized as an important transport parameter. Understanding ions transport by a fundamental approach based on the mesoscopic and macroscopic physics of fluids is only partial at this level of description. In this paper, we go beyond the theoretical approach by performing classical Molecular Dynamics (MD) with polarizable force fields for water and ions, a method particularly well adapted to the nanoscale. The aim of this work is to better understand the physical phenomena involved in nano-confined aqueous solutions, especially the role of "solute-solute" and "solute-interface" interactions within nanopore. We have simulated ions transport through a 1 nm internal radius, rigid and neutral atomistic nanotube connected with two reservoirs. The study focused on water/nanopore interface, more particularly on its effects due to the nature of the nanopore surface hydrophobic/hydrophilic. Also, we study the distribution of the ions and water molecules. The simulations illustrated that the surface has a major effect on the ions distribution in aqueous solutions near interfaces and in nanopore, the I- anions prefer to localize towards the center of hydrophilic pore surface, while  this anions prefer to localize at the interface in hydrophobic pore surface. The ions distributions can be explained by the efficacy role of the water structure, the ion size and polarizability. These results provide useful information for predicting properties of nanoporous membranes, and give a guide to designing synthetic membranes for applications in nanofiltration, etc
Copyright © 2013 Praise Worthy Prize - All rights reserved.


Surface Effect; Ions Size; Nanopore; Molecular Dynamics and Polarizability

Full Text:



L. Dresner, K. A. Kraus, Ion exclusion and salt filtering with porous ion-exchange materials. J. Phys. Chem., vol. 67 , 1963, pp. 990-998.

G. Jacazio, R. F. Probstein, A. A. Sonin, D. Yung, Electrokinetic salt rejection in hyperfiltration through porous materials: Theory and experiments, J. Phys. Chem., vol. 76, 1972, pp. 4015-4023.

Z. Siwy, A. Fulinski, Origin of 1/fα Noise in Membrane Channel Currents, Phys. Rev. Lett., vol. 89, 2002, pp. 158101-158104.

P. S. Crozier, R. L. Rowley, Molecular dynamics simulation of continuous current flow through a model biological membrane channel, Phys. Rev. Lett., vol. 86, 2001, pp. 2467-2470.

B. Roux, M. Karplus, Molecular dynamics simulations of the gramicidin channel. Annu. Rev. Biophys. Biomol. Struct., vol. 23, 1994, pp. 731-761.

M. Jardat, B. Hribar-Lee, V. Vlachy, Self-diffusion of ions in charged nanoporous media Soft Matter., vol. 8, 2012, pp. 954-964.

A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, C. Dekker., Fabrication of solid-state nanopores with single-nanometre precision, Nature Mater, vol. 2, 2003, pp. 537-540.

L. R. Forrest, M. S. Sansom, Membrane simulations: bigger and better?, Curr. Opin. Struct Biol., vol. 10 n. 2, 2000, pp. 174-181.

S. P. Crozier, D. Henderson, R. Rowley, D. D. Busath, Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics, J. Biophys. vol. 81 n. 6, 2001, pp. 3077-3089.

Ian C. Bourg and Carl I. Steefel, ZnO-Based Dye-Sensitized Solar Cells, J. Phys. Chem. C., vol 116 n. 21, 2012, pp. 11413–11425.

C. Boiteux, S. Kraszewski, C. Ramseyer, C. Girardet, Ion conductance vs. pore gating and selectivity in KcsA channel: modeling achievements and perspectives, Journal of Molecular Modeling, vol. 13, 2007, pp. 699-713.

A. Boţan, B. Rotenberg, V. Marry, P. Turq, B. Noetinger, Hydrodynamics in Clay Nanopores, J. Phys. Chem. C, vol. 115 n 32, 2011, pp. 16109–16115.

M. Compoint, P. Carloni, C. Ramseyer, C. Girardet, Molecular dynamics study of the KcsA channel at 2.0-angstrom resolution: stability and concerted motions within the pore, Biochimica et Biophysica Acta - Biomembranes, vol. 1661 n 26, 2004, pp. 26-39.

B. Corry, T. W. Allen, S. Kuyucak, S. H. Chung, A model of calcium channels, Biochim. Biophys. Acta., vol 1509, 2000, pp. 1-6.

D. Horinek, R. Netz, Specific Ion Adsorption at Hydrophobic Solid Surfaces, Phys. Rev. Lett., vol 99, 2007, p 226104.

P. Jungwirth, D. J. Tobias, Specific Ion Effects at the Air/Water Interface, Chem. Rev., vol 106, 2006, 1259.

F. Z. Donnan, Electrochem. 1911 ; 17, 572.

J. Palmeri, P. Blanc, A. Larbot, P. David, Theory of pressure-driven transport of neutral solutes and ions in porous ceramic nanofiltration membranes, J. Membrane Sci., vol 160 n 2, 1999, pp. 141-170.

H. J. M. Hijnen, J. Van Daalen, J. A. M. Smit, The application of the space-charge model to the permeability properties of charged microporous membranes, J. Colloid Interface Sci., vol 107 n 2, 1985, pp. 525-539.

B. Jamnik, V. J. Vlachy, Ion Partitioning between Charged Micropores and Bulk Electrolyte Solution. Mixtures of Mono- and Divalent Counterions and Monovalent Co-Ions, Am. Chem. Soc., vol 117 n 30, 1995, 8010-8016.

M. Dubois, T. Zemb, L. Belloni, A. Deville, P. Levitz, R. Setton, Osmotic pressure and salt exclusion in electrostatically swollen lamellar phases. J. Chem. Phys. vol 96, 1992, pp. 2278-2286.

G. Markovich, L. Perera, M. Berkowitz, O. Cheshnovsky, The Solvation of Cl-, Br-, and I- in Acetonitrile Clusters: Photoelectron Spectroscopy and Molecular Dynamics Simulations, J. Chem. Phys., vol 105, 1996, pp. 2675-2685.

D. A. Case, T. Cheatham, T. Darden , H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, R. Woods, The Amber biomolecular simulation programs, J.Comput. Chem., vol 26 n 16, 2005, pp. 1668-1688.

H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys., vol 81 n 8, 1984, pp. 3684-3690.

J. W. Caldwell, P. A. Kollman, Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide, J. Phys. Chem., vol 99 n 16, 1995, pp. 6208-6219.

L. Perera, M. L. Berkowitz, Structures of Cl−(H2O)n and F−(H2O)n (n=2,3,...,15) clusters. Molecular dynamics computer simulations, J. Chem. Phys., vol 100 n 4 , 1994, pp. 3085-3093.

L. X. Dang, T. S. Chang, Molecular Mechanism of Ion Binding to the Liquid/Vapor Interface of Water, J. Phys. Chem. B., vol 106 n 2, 2002, pp. 235-238.

J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, Numerical integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J. Comput. Phys., vol 23, 1977, pp. 327-341.

W. F. Van Gunsteren, H. J. C. Berendsen, Algorithms for macromolecular dynamics and constraint dynamics, Mol. Phys., vol 34, 1977, p. 1311.

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys., vol 103, 1995, p. 8577.

P. Jungwirth, D. J. Tobias, Specific ion effects at the air/water interface, Chem Rev., vol 106, 2002, pp. 1259-1281.

D. Chandler, Interfaces and the driving force of hydrophobic assembly, Review, Nature, vol 437, 2005, 640-647.

V. Padmanabhan, J. Daillant, L. Belloni, Specific ion adsorption and short-range interactions at the air aqueous solution interface, Phys. Rev. Lett., vol 99 n 8, 2007, pp. 086105-086108.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2023 Praise Worthy Prize