Open Access Open Access  Restricted Access Subscription or Fee Access

Enhanced Control of Overhead Crane System Using First-Order Sliding Mode Control and Extended Kalman Filter Observer


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v16i3.23438

Abstract


Overhead cranes are now highly automated devices, and numerous studies have been devoted to the design and implementation of automatic controllers to reduce residual vibrations during cargo change operations. Tipping over crane payloads seriously impairs their efficiency and safety. The reduced payload oscillations on a single pendulum crane with a point payload attached to the end of the cable brought significant improvements. On the other hand, the large payloads and the actual arrangement of the lifting mechanism can convert the crane into a double pendulum system with a distributed mass payload. Therefore, in this article, a nonlinear model is presented initially, after which it is linearized. Then, a robust First-Order Sliding Mode Controller (FOSMC) will be developed for a spreading system capable of automatically driving the container to the desired angle while eliminating the residual oscillations caused by the cable. To accurately estimate the states of the system, such as the angle of the cable and the angle of the payload (spreader and container), an Extended Kalman Filter (EKF) observer is used. The simulation results, obtained using Matlab/Simulink, show that the proposed approach provides accurate and stable control of the system with improved static and dynamic performances in terms of eliminating the position error for the angle of the cable, improving the angle stability with a small overshoot, ameliorating the response time, and canceling the estimation error of the state variables. Consequently, this research contributes to the enhancement of overhead crane automation by addressing the obstacles arising from payload oscillation.
Copyright © 2023 Praise Worthy Prize - All rights reserved.

Keywords


Double Pendulum Crane; Extended Kalman Filter Observer; First-Order Sliding Mode Control; Overhead Crane System

Full Text:

PDF


References


W. Singhose, J. Lawrence, K. Sorensen, et K. Dooroo, Applications and educational uses of crane oscillation control, FME Trans., vol. 34, no 4, p. 175-183, 2006.

M. Lourakis et M. Pateraki, Markerless Visual Tracking of a Container Crane Spreader, in 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada: IEEE, oct. 2021, p. 2579-2586.
https://doi.org/10.1109/ICCVW54120.2021.00291

M. Lourakis et M. Pateraki, Computer vision for increasing safety in container handling operations, presented at 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), 2022.
https://doi.org/10.54941/ahfe1002146

M. Thomas et O. Sawodny, A model to control self-erecting tower cranes with elastic structure, IFAC-Pap., vol. 53, no 2, p. 8947-8952, Jan. 2020.
https://doi.org/10.1016/j.ifacol.2020.12.1480

C. Zhou, B. K. Lee, et H. Li, Integrated optimization on yard crane scheduling and vehicle positioning at container yards, Transp. Res. Part E Logist. Transp. Rev., vol. 138, p. 101966, June 2020.
https://doi.org/10.1016/j.tre.2020.101966

C. Tan, W. Yan, et J. Yue, Quay crane scheduling in automated container terminal for the trade-off between operation efficiency and energy consumption, Adv. Eng. Inform., vol. 48, p. 101285, Apr. 2021.
https://doi.org/10.1016/j.aei.2021.101285

R. Tang et J. Huang, Control of bridge cranes with distributed-mass payloads under windy conditions, Mech. Syst. Signal Process., vol. 72-73, p. 409-419, May 2016.
https://doi.org/10.1016/j.ymssp.2015.11.002

Z. Chen, Z. Chen, et B. Yao, Modeling and H∞ Position Control of a Spreader in the Gantry Crane, IFAC-Pap., vol. 54, no 20, p. 592-597, 2021.
https://doi.org/10.1016/j.ifacol.2021.11.236

J. Neupert, T. Heinze, O. Sawodny, et K. Schneider, Observer design for boom cranes with double-pendulum effect, in 2009 IEEE International Conference on Control Applications, St. Petersburg, Russia: IEEE, July. 2009, p. 1545-1550.
https://doi.org/10.1109/CCA.2009.5281042

L. A. Tuan et S.-G. Lee, Modeling and advanced sliding mode controls of crawler cranes considering wire rope elasticity and complicated operations, Mech. Syst. Signal Process., vol. 103, p. 250-263, March 2018.
https://doi.org/10.1016/j.ymssp.2017.09.045

Win, T., Hesketh, T., Eaton, R., Robotic Tower Crane Modeling and Control (RTCMC) with LQR-DRO and LQR-LEIC for Linear and Nonlinear Payload Swing Minimization, (2016) International Review of Automatic Control (IREACO), 9 (2), pp. 72-87.
https://doi.org/10.15866/ireaco.v9i2.8431

L. Ramli, Z. Mohamed, A. M. Abdullahi, H. I. Jaafar, et I. M. Lazim, Control strategies for crane systems: A comprehensive review, Mech. Syst. Signal Process., vol. 95, p. 1-23, oct. 2017.
https://doi.org/10.1016/j.ymssp.2017.03.015

T. Y. Jian et Z. Mohamed, Modelling and Sway Control of a Double-Pendulum Overhead Crane System, Appl. Model. Simul., vol. Vol 1, no No. 1, p. 15-21, 2017.

M. R. Mojallizadeh, Modeling and control of overhead cranes: A tutorial overview and perspectives, Annu. Rev. Control, 2023.
https://doi.org/10.1016/j.arcontrol.2023.03.002

H. M. Omar, Control of Gantry and Tower Cranes, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2003.

Masroeri, A., Prananda, J., Sholahuddin, M., Motion Detection Simulation of Container Crane Spreader Using Computer Vision, (2019) International Review of Mechanical Engineering (IREME), 13 (8), pp. 438-446.
https://doi.org/10.15866/ireme.v13i8.16117

C. Aguiar, D. Leite, D. Pereira, G. Andonovski, et I. Škrjanc, Nonlinear modeling and robust LMI fuzzy control of overhead crane systems, J. Frankl. Inst., vol. 358, no 2, p. 1376-1402, janv. 2021.
https://doi.org/10.1016/j.jfranklin.2020.12.003

D. Qian, S. Tong, et S. Lee, Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes, Autom. Constr., vol. 65, p. 133-143, 2016.
https://doi.org/10.1016/j.autcon.2015.12.014

N. Sun, Y. Fang, et X. Zhang, Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs, Automatica, vol. 49, no 5, p. 1318-1325, May 2013.
https://doi.org/10.1016/j.automatica.2013.01.039

Y.-S. Kim, K.-S. Hong, et S.-K. Sul, Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback, Int. J. Control Autom. Syst., vol. 2, no 4, p. 435-449, 2004.

X. Wu et X. He, Partial feedback linearization control for 3-D underactuated overhead crane systems, ISA Trans., vol. 65, p. 361-370, Nov. 2016.
https://doi.org/10.1016/j.isatra.2016.06.015

Q. H. Ngo, N. P. Nguyen, C. N. Nguyen, T. H. Tran, et K.-S. Hong, Fuzzy sliding mode control of container cranes, Int. J. Control Autom. Syst., vol. 13, no 2, p. 419-425, Apr. 2015.
https://doi.org/10.1007/s12555-014-0150-0

Q. Chen, W. Cheng, J. Liu, et R. Du, Partial state feedback sliding mode control for double-pendulum overhead cranes with unknown disturbances, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no 8, p. 3902-3911, Apr. 2022.
https://doi.org/10.1177/09544062211052018

Y. Wen, X. Lou, W. Wu, et B. Cui, Backstepping Boundary Control for a Class of Gantry Crane Systems, IEEE Trans. Cybern., vol. PP, Aug. 2022.
https://doi.org/10.1109/TCYB.2022.3188494

M. Zhang, X. Ma, X. Rong, R. Song, X. Tian, et Y. Li, A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters, Nonlinear Dyn., vol. 89, p. 1-13, Aug. 2017.
https://doi.org/10.1007/s11071-017-3551-9

M. Volckaert, M. Diehl, et J. Swevers, Generalization of norm optimal ILC for nonlinear systems with constraints, Mech. Syst. Signal Process., vol. 39, no 1-2, p. 280-296, Aug. 2013.
https://doi.org/10.1016/j.ymssp.2013.03.009

K. Zavari, G. Pipeleers, et J. Swevers, Gain-Scheduled Controller Design: Illustration on an Overhead Crane, IEEE Trans. Ind. Electron., vol. 61, no 7, p. 3713-3718, July. 2014.
https://doi.org/10.1109/TIE.2013.2270213

J. Smoczek, Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system, Mech. Syst. Signal Process., vol. 62-63, p. 324-340, Oct. 2015.
https://doi.org/10.1016/j.ymssp.2015.02.019

M. Li, H. Chen, et R. Zhang, An Input Dead Zones Considered Adaptive Fuzzy Control Approach for Double Pendulum Cranes With Variable Rope Lengths, IEEEASME Trans. Mechatron., vol. 27, no 5, p. 3385-3396, Oct. 2022.
https://doi.org/10.1109/TMECH.2021.3137818

W. Tang, E. Zhao, L. Sun, et H. Gao, An active swing suppression control scheme of overhead cranes based on input shaping model predictive control, Syst. Sci. Control Eng., vol. 11, no 1, p. 2188401, Dec. 2023.
https://doi.org/10.1080/21642583.2023.2188401

M. N. Vu, A. Lobe, F. Beck, T. Weingartshofer, C. Hartl-Nesic, et A. Kugi, Fast trajectory planning and control of a lab-scale 3D gantry crane for a moving target in an environment with obstacles, Control Eng. Pract., vol. 126, p. 105255 Sept. 2022.
https://doi.org/10.1016/j.conengprac.2022.105255

H. Shi, G. Li, X. Ma, et J. Sun, Research on Nonlinear Coupling Anti-Swing Control Method of Double Pendulum Gantry Crane Based on Improved Energy, Symmetry, vol. 11, no 12, p. 1511, Dec. 2019.
https://doi.org/10.3390/sym11121511

Doynikov, V., Soukkio, T., Lindh, P., Pyrhönen, J., Servo Drive Comparison in a Hoist Application, (2014) International Review of Automatic Control (IREACO), 7 (4), pp. 334-343.

Abdellah, A., Abdelhafid, A., Mostafa, R., Using an Utkin Observer Based Controller for a Trajectory Tracking of an Overhead Crane System, (2013) International Review of Automatic Control (IREACO), 6 (3), pp. 316-321.

V. I. Utkin, Sliding modes in control and optimization. Springer Science & Business Media, 2013.

Noori, O., Mustafa, M., Compressed Extended Kalman Filter for Sensorless Control of Asynchronous Motor, (2020) International Journal on Energy Conversion (IRECON), 8 (6), pp. 200-211.
https://doi.org/10.15866/irecon.v8i6.19202

D. Liu, J. Yi, D. Zhao, et W. Wang, Adaptive sliding mode fuzzy control for a two-dimensional overhead crane, Mechatronics, vol. 15, no 5, p. 505-522, June 2005.
https://doi.org/10.1016/j.mechatronics.2004.11.004

D. Qian et J. Yi, Hierarchical Sliding Mode Control for Under-actuated Cranes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.
https://doi.org/10.1007/978-3-662-48417-3


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize