New Nonlinear Control Based on Polynomial Approach for Islanded DC Microgrid Robustness and Voltage Stability
(*) Corresponding author
DOI: https://doi.org/10.15866/ireaco.v15i5.22535
Abstract
This paper aims at developing a novel robust polynomial decentralized control approach for an islanded hybrid DC MicroGrid (MG) with saturation constraint. The investigated MG system consists of a PV unit, a battery and a SuperCapacitor (SC). Each source is controlled by a DC-DC power converter. The challenge is to design a new control approach to enhance the robustness and the stability of the DC MG subject to high nonlinear variations. The main nonlinear control objectives are to: 1) maintain the DC bus voltage to a reference value, 2) ensure the power balance in the system, and 3) warranty the system robustness against perturbations and parametric uncertainties. The Polynomial Control (PC) theory offers an adequate framework to meet the required performances. The resulting control algorithms are simple, and do not need important calculating resources. An extended version of the PC controller is also proposed to make the system Fault Tolerant (FT) w.r.t severe eventual faults, such as a short circuit case at the DC bus level. The design conditions of the developed polynomial controllers are solved using the Sum Of Squares (SOS) approach while verifying the saturation constraint. Stability conditions are ensured based on polynomial Lyapunov functions. Finally, simulations are carried out on MATLAB/Simulink to prove the pertinence and the robustness of the developed control architecture while considering variable loads and solar irradiance. Results are compared to model-based feedback linearization control and sliding mode control techniques.
Copyright © 2022 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
Hossain, E., Kabalci, E., Bayindir, R., & Perez, R. (2014). Microgrid testbeds around the world: State of art. Energy Conversion and Management, 86, 132-153.
https://doi.org/10.1016/j.enconman.2014.05.012
Karavas, C. S., Kyriakarakos, G., Arvanitis, K. G., & Papadakis, G. (2015). A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Conversion and Management, 103, 166-179.
https://doi.org/10.1016/j.enconman.2015.06.021
Chen, D., Xu, L., & Yao, L. (2013). DC voltage variation based autonomous control of DC microgrids. IEEE Transactions on Power Delivery, 28(2), 637-648.
https://doi.org/10.1109/TPWRD.2013.2241083
Wu, T. F., Chang, C. H., Lin, L. C., Yu, G. R., & Chang, Y. R. (2012). DC-bus voltage control with a three-phase bidirectional inverter for DC distribution systems. IEEE Transactions on Power Electronics, 28(4), 1890-1899.
https://doi.org/10.1109/TPEL.2012.2206057
Avila-Becerril, S., & Espinosa-Pérez, G. (2021). Control of islanded microgrids considering power converter dynamics. International Journal of Control, 94(9), 2520-2530.
https://doi.org/10.1080/00207179.2020.1713402
Tahim, A. P. N., Pagano, D. J., Lenz, E., & Stramosk, V. (2014). Modeling and stability analysis of islanded DC microgrids under droop control. IEEE Transactions on power electronics, 30(8), 4597-4607.
https://doi.org/10.1109/TPEL.2014.2360171
Yang, N., Paire, D., Gao, F., Miraoui, A., & Liu, W. (2015). Compensation of droop control using common load condition in DC microgrids to improve voltage regulation and load sharing. International Journal of Electrical Power & Energy Systems, 64, 752-760.
https://doi.org/10.1016/j.ijepes.2014.07.079
Augustine, S., Mishra, M. K., & Lakshminarasamma, N. (2014). Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid. IEEE Transactions on Sustainable Energy, 6(1), 132-141.
https://doi.org/10.1109/TSTE.2014.2360628
Eini, M. K., Moghaddam, M. M., Tavakoli, A., & Alizadeh, B. (2022). Improving the stability of hybrid microgrids by nonlinear centralized control in island performance. International Journal of Electrical Power & Energy Systems, 136, 107688.
https://doi.org/10.1016/j.ijepes.2021.107688
Perez, F., Iovine, A., Damm, G., Galai-Dol, L., & Ribeiro, P. F. (2019). Stability analysis of a DC microgrid for a smart railway station integrating renewable sources. IEEE Transactions on Control Systems Technology, 28(5), 1802-1816.
https://doi.org/10.1109/TCST.2019.2924615
Alhamrouni, I., Hairullah, M. A., Omar, N. S., Salem, M., Jusoh, A., & Sutikno, T. (2019). Modelling and design of PID controller for voltage control of AC hybrid micro-grid. International Journal of Power Electronics and Drive Systems, 10(1), 151.
https://doi.org/10.11591/ijpeds.v10.i1.pp151-159
Chauhan, R. K., Rajpurohit, B. S., Hebner, R. E., Singh, S. N., & Longatt, F. M. (2015, November). Design and analysis of PID and fuzzy-PID controller for voltage control of DC microgrid. In 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA) (pp. 1-6). IEEE.
https://doi.org/10.1109/ISGT-Asia.2015.7387019
Liu, B., Zhuo, F., Zhu, Y., & Yi, H. (2014). System operation and energy management of a renewable energy-based DC micro-grid for high penetration depth application. IEEE Transactions on Smart Grid, 6(3), 1147-1155.
https://doi.org/10.1109/TSG.2014.2374163
Meng, L., Shafiee, Q., Trecate, G. F., Karimi, H., Fulwani, D., Lu, X., & Guerrero, J. M. (2017). Review on control of DC microgrids and multiple microgrid clusters. IEEE journal of emerging and selected topics in power electronics, 5(3), 928-948.
https://doi.org/10.1109/JESTPE.2017.2690219
Siad, S. B., Malkawi, A., Damm, G., Lopes, L., & Dol, L. G. (2019). Nonlinear control of a DC MicroGrid for the integration of distributed generation based on different time scales. International Journal of Electrical Power & Energy Systems, 111, 93-100.
https://doi.org/10.1016/j.ijepes.2019.03.073
Mahmud, M. A., Roy, T. K., Saha, S., Haque, M. E., & Pota, H. R. (2019). Robust nonlinear adaptive feedback linearizing decentralized controller design for islanded DC microgrids. IEEE transactions on industry applications, 55(5), 5343-5352.
https://doi.org/10.1109/TIA.2019.2921028
Kotb, K. M., Elmorshedy, M. F., Salama, H. S., & Dán, A. (2022). Enriching the stability of solar/wind DC microgrids using battery and superconducting magnetic energy storage based fuzzy logic control. Journal of Energy Storage, 45, 103751.
https://doi.org/10.1016/j.est.2021.103751
Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and observation (Vol. 10). New York: Springer New York.
https://doi.org/10.1007/978-0-8176-4893-0
Pan, J., Cui, H., Wang, Z., Li, S., & Li, Q. (2017, July). Finite-time control for DC-DC boost converter using nonsingular terminal sliding modes via exact feedback linearization. In 2017 36th Chinese Control Conference (CCC) (pp. 9302-9307). IEEE.
https://doi.org/10.23919/ChiCC.2017.8028839
Haque, T., Roy, T. K., Faria, F., Khatun, M. M., Sarkar, T., & Hore, A. K. (2021, July). Power flow control in dc microgrids using an integral sliding mode control approach. In 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI) (pp. 1-5). IEEE.
https://doi.org/10.1109/ACMI53878.2021.9528255
Dehkordi, N. M., Sadati, N., & Hamzeh, M. (2017). Robust backstepping control of an interlink converter in a hybrid AC/DC microgrid based on feedback linearisation method. International Journal of Control, 90(9), 1990-2004.
https://doi.org/10.1080/00207179.2016.1231425
Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132.
https://doi.org/10.15866/iree.v14i2.16331
Mahmud, M. A., Roy, T. K., Islam, S. N., Saha, S., & Haque, M. E. (2017). Nonlinear decentralized feedback linearizing controller design for islanded dc microgrids. Electric Power Components and Systems, 45(16), 1747-1761.
https://doi.org/10.1080/15325008.2017.1401020
Kassir, S., Doumiati, M., Machmoum, M., El Rafei, M., & Francis, C. (2021, October). DC microgrid voltage stability by Model Free Super-Twisting Sliding Mode Control. In IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE.
https://doi.org/10.1109/IECON48115.2021.9589317
Traoré, B., Doumiati, M., Olivier, J., Morel, C., Adaptive Power Sharing Algorithm Combined with Robust Control for a Multi-Source Electric Vehicle: Experimental Validation, (2022) International Review of Electrical Engineering (IREE), 17 (1), pp. 39-53.
https://doi.org/10.15866/iree.v17i1.21269
Qianwan, X., Navid, V., Linglin, C., Tomislav, D., Lihua, X., & Frede, B. (2020). Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids, IEEE journal of Emerging and selected topics in power electronics, 9 (2).
https://doi.org/10.1109/JESTPE.2020.2978064
Iben Ammar, I., Gassara, H., El Hajjaji, A., & Chaabane, M. (2018). New polynomial Lyapunov functional approach to observer-based control for polynomial fuzzy systems with time delay. International Journal of Fuzzy Systems, 20(4), 1057-1068.
https://doi.org/10.1007/s40815-017-0425-8
Iben Ammar, I., Gassara, H., El Hajjaji, A., Tadeo, F., & Chaabane, M. (2020). Observer-based controller for positive polynomial systems with time delay. Optimal Control Applications and Methods, 41(1), 278-291.
https://doi.org/10.1002/oca.2542
Tanaka, K., Yoshida, H., Ohtake, H., & Wang, H. O. (2007, October). Stabilization of polynomial fuzzy systems via a sum of squares approach. In 2007 IEEE 22nd International Symposium on Intelligent Control (pp. 160-165). IEEE.
https://doi.org/10.1109/ISIC.2007.4450878
Tanaka, K., Yoshida, H., Ohtake, H., & Wang, H. O. (2008). A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Transactions on Fuzzy systems, 17(4), 911-922.
https://doi.org/10.1109/TFUZZ.2008.924341
Gassara, H., El Hajjaji, A., & Chaabane, M. (2016). Control of time delay polynomial fuzzy model subject to actuator saturation. International Journal of Fuzzy Systems, 18(5), 763-772.
https://doi.org/10.1007/s40815-015-0133-1
Iben Ammar, I., Gassara, H., El Hajjaji, A., & Chaabane, M. (2021, December). DC-DC Buck Converter Polynomial Tracking Control Design With Saturation Constraint. In 2021 60th IEEE Conference on Decision and Control (CDC) (pp. 2800-2805).
https://doi.org/10.1109/CDC45484.2021.9683769
Berrueta, A., San Martin, I., Hernández, A., Ursúa, A., & Sanchis, P. (2014). Electro-thermal modelling of a supercapacitor and experimental validation. Journal of Power Sources, 259, 154-165.
https://doi.org/10.1016/j.jpowsour.2014.02.089
Khasawneh, H., & Illindala, M. (2014, October). Supercapacitor cycle life equalization in a microgrid through flexible distribution of energy and storage resources. In 2014 IEEE Industry Application Society Annual Meeting (pp. 1-8). IEEE.
https://doi.org/10.1109/IAS.2014.6978373
Kassir, S., Doumiati, M., Machmoum, M., Francis, C., El Rafei, M., Energy Management System Based on Cost Optimization of Battery Aging and Hydrogen Consumption in a Microgrid, (2022) International Review of Electrical Engineering (IREE), 17 (4), pp. 346-359.
https://doi.org/10.15866/iree.v17i4.21983
Prajna, S., Papachristodoulou, A., Seiler, P., & Parrilo, P. A. (2004). SOSTOOLS: Sum of squares optimization toolbox for MATLAB.
Perez, F., Iovine, A., Damm, G., & Ribeiro, P. (2018, February). DC microgrid voltage stability by dynamic feedback linearization. In 2018 IEEE international conference on industrial technology (ICIT) (pp. 129-134). IEEE.
https://doi.org/10.1109/ICIT.2018.8352164
Zehra, S. S., Rahman, A. U., & Ahmad, I. (2022). Fuzzy-barrier sliding mode control of electric-hydrogen hybrid energy storage system in DC microgrid: Modelling, management and experimental investigation. Energy, 239, 122260.
https://doi.org/10.1016/j.energy.2021.122260
Lu, Z., Zhang, X., & Wang, Y. (2020, December). Nonlinear Control Strategy of Hybrid Energy Storage System Based on Feedback Linearization. In 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI) (pp. 674-677). IEEE.
https://doi.org/10.1109/CVCI51460.2020.9338495
Wang, L., Miao, T., Liu, X., & Liu, S. (2020). Sliding mode control of Bi-directional DC/DC converter in DC microgrid based on exact feedback linearization. WSEAS Transactions on Circuits and Systems, 19, 206-211.
https://doi.org/10.37394/23201.2020.19.23
Messaoudi, A., Gassara, H., & El Hajjaji, A. (2021). Adaptive Fault Estimation and Fault Tolerant Control for Polynomial Systems: Application to Electronic and Mechanical Systems. Mathematical Problems in Engineering, 2021.
https://doi.org/10.1155/2021/6342604
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize