Open Access Open Access  Restricted Access Subscription or Fee Access

Gazebo – Simulink Framework for Trajectory Tracking in a Multi-Quadcopter Environment


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v15i4.21432

Abstract


Physical testing of quadcopter controllers is challenging as the quadcopters are vulnerable to damages, and the cost needed for setting up a flying arena is enormous. This work aims to establish a simulation framework that can be used to analyze and verify the performance of the control algorithms developed for quadcopters before actually deploying them in the actual quadcopters. The framework seamlessly integrates the controller models developed in MATLAB/Simulink and the physics-based Gazebo simulator through Robot Operating System. The framework is extended to simulate multiple quadrotors and to test the performance of each of their control algorithms. In this work, two independent Proportional, Integral, Derivative (PID) controllers developed in Simulink have been used to control two different Crazyflie quadcopters to make them follow the desired trajectories. The framework can be used for pedagogy and by the researchers for developing and testing the performance of control algorithms developed for any of the physics-based quadcopter models in the Gazebo simulator.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Crazyflie; Gazebo; MATLAB/Simulink; Multiple Quadcopters; PID Controller; ROS; Simulation Framework; Trajectory Tracking

Full Text:

PDF


References


J. Chen, X. Zhang, B. Xin and H. Fang, Coordination between unmanned aerial and ground Vehicles: A taxonomy and optimization perspective, IEEE Transactions on Cybernetics, vol. 46, no. 4, pp. 959-972, April 2016.
https://doi.org/10.1109/TCYB.2015.2418337

W. Yu, L. Zhou, X. Yu, J. Lü and R. Lu, Consensus in multi-agent systems with second-order dynamics and sampled data, IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2137-2146, Nov. 2013.
https://doi.org/10.1109/TII.2012.2235074

Liu, W., Zheng, Z., & Cai, K., Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval, Chinese Journal of Aeronautics, Vol. 26, No. 3, pp.646-660, 2013.
https://doi.org/10.1016/j.cja.2013.04.041

Mulgaonkar, Y., Makineni, A., Guerrero-Bonilla, L., & Kumar, V., Robust aerial robot swarms without collision avoidance, IEEE Robotics and Automation Letters, Vol. 3, No. 1, pp.596-603, 2017.
https://doi.org/10.1109/LRA.2017.2775699

Ahmed S, Qiu B, Ahmad F, Kong C-W, Xin H., A State-of-the-Art Analysis of Obstacle Avoidance Methods from the Perspective of an Agricultural Sprayer UAV's Operation Scenario, Agronomy, 11(6):1069, 2021.
https://doi.org/10.3390/agronomy11061069

Keller, J., Thakur, D., Likhachev, M., Gallier, J., & Kumar, V., Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions, IEEE Transactions on Automation Science and Engineering, Vol. 14, No. 1, pp.17-24, 2016.
https://doi.org/10.1109/TASE.2016.2623642

Housny, H., Chater, E., El Fadil, H., Feedforward Neural Network Controller for Quadrotor in the Presence of Payload and Wind Disturbances, (2021) International Review of Automatic Control (IREACO), 14 (5), pp. 287-299.
https://doi.org/10.15866/ireaco.v14i5.20480

Loubar, H., Boushaki, R., Aouati, A., Bouanzoul, M., Sliding Mode Controller for Linear and Nonlinear Trajectory Tracking of a Quadrotor, (2020) International Review of Automatic Control (IREACO), 13 (3), pp. 128-138.
https://doi.org/10.15866/ireaco.v13i3.18522

Mlayeh, H., Ghachem, S., Nasri, O., Ben Othman, K., Stabilization of a Quadrotor Vehicle Using PD and Recursive Nonlinear Control Techniques, (2021) International Review of Aerospace Engineering (IREASE), 14 (4), pp. 211-219.
https://doi.org/10.15866/irease.v14i4.19739

Kramar, V., Alchakov, V., Kabanov, A., Dudnikov, S., Dmitriev, A., The Design of Optimal Lateral Motion Control of an UAV Using the Linear-Quadratic Optimization Method in the Complex Domain, (2020) International Review of Aerospace Engineering (IREASE), 13 (6), pp. 217-227.
https://doi.org/10.15866/irease.v13i6.19130

Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A., A distributed algorithm for area partitioning in grid-shape and vector-shape configurations with multiple aerial robots, Journal of Intelligent & Robotic Systems, Vol. 84, No. 1, pp.543-557, 2016.
https://doi.org/10.1007/s10846-015-0272-5

Liu, S., Mohta, K., Atanasov, N., & Kumar, V., Search-based Motion Planning for Aggressive Flight in Se(3), IEEE Robotics and Automation Letters, Vol. 3, No. 3, pp.2439-2446, 2018.
https://doi.org/10.1109/LRA.2018.2795654

Chee, K. Y., & Zhong, Z. W., Control, navigation and collision avoidance for an unmanned aerial vehicle, Sensors and Actuators A: Physical, pp.66-76, 2013.
https://doi.org/10.1016/j.sna.2012.11.017

Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V., The grasp multiple micro-uav testbed, IEEE Robotics & Automation Magazine, Vol. 17, No. 3, pp.56-65, 2010.
https://doi.org/10.1109/MRA.2010.937855

Kate, B., Waterman, J., Dantu, K., & Welsh, M., Simbeeotic: a simulator and testbed for micro-aerial vehicle swarm experiments, ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN), pp. 49-60, 2012.
https://doi.org/10.1109/IPSN.2012.6920950

Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P., Sherback, M., & D'Andrea, R., A platform for aerial robotics research and demonstration: The flying machine arena, Mechatronics, Vol. 24, No. 1, pp.41-54 ,2014.
https://doi.org/10.1016/j.mechatronics.2013.11.006

Koenig, N., & Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator', IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Vol. 3, pp. 2149-2154, 2004.
https://doi.org/10.1109/IROS.2004.1389727

Shah, S., Dey, D., Lovett, C., & Kapoor, A., Airsim: High-fidelity visual and physical simulation for autonomous vehicles, Field and service robotics, Cham: Springer, pp. 621-635,2018.
https://doi.org/10.1007/978-3-319-67361-5_40

Echeverria, G., Lassabe, N., Degroote, A., & Lemaignan, S., Modular Open Robots Simulation Engine: Morse, IEEE International Conference on Robotics and Automation, pp. 46-51, 2011.
https://doi.org/10.1109/ICRA.2011.5980252

Michel, O., Webots: Professional Mobile Robot Simulation, International Journal of Advanced Robotic Systems, Vol. 1, pp. 39-42, 2004.
https://doi.org/10.5772/5618

Silano, G., & Iannelli, L., MAT-Fly: An Educational Platform for Simulating Unmanned Aerial Vehicles Aimed to Detect and Track Moving Objects, IEEE Access, Vol. 9, pp. 39333-39343, 2021.
https://doi.org/10.1109/ACCESS.2021.3064758

Giernacki, W., Skwierczyński, M., Witwicki, W., Wroński, P., & Kozierski, P., Crazyflie 2.0 Quadrotor as a Platform for Research and Education in Robotics and Control Engineering, 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), August, pp. 37-42, 2017.
https://doi.org/10.1109/MMAR.2017.8046794

Megalingam, R.K., Raj, R.V.R., Masetti, A., Akhil, T., Chowdary, G.N., Naick, V.S, Design and Implementation of an Arena for Testing and Evaluating Quadcopter, 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, pp. 1-7, 2018.
https://doi.org/10.1109/CCAA.2018.8777578

D. S. Vamsi, T. V. S. Tanoj, U. M. Krishna and M. Nithya , Performance Analysis of PID controller for Path Planning of a Quadcopter, 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, pp. 116-121,2019.
https://doi.org/10.1109/ICPEDC47771.2019.9036558

Megalingam, R. K., Prithvi, D. V., Kumar, N. C. S., & Egumadiri, V., Drone Stability Simulation Using ROS and Gazebo', Advanced Computing and Intelligent Technologies, Springer, Singapore, pp. 131-143, 2022.
https://doi.org/10.1007/978-981-16-2164-2_11

Koubâa, A. (Ed.)., Robot Operating System (ROS): The Complete Reference', Cham: Springer, Vol. 1,2017
https://doi.org/10.1007/978-3-319-54927-9

Furrer F., Burri M., Achtelik M., and Siegwart R., RotorS - A Modular Gazebo MAV Simulator Framework, Springer, K. Anis, (Ed.) Robot Operating System (ROS): The Complete Reference, Vol. 1, pp. 595-625, 2016.
https://doi.org/10.1007/978-3-319-26054-9_23

Lee, T., Leok, M., & McClamroch, N. H., Geometric tracking control of a quadrotor UAV on SE (3), 49th IEEE conference on decision and control (CDC), pp. 5420-5425, 2010.
https://doi.org/10.1109/CDC.2010.5717652

Lynen, S., Achtelik, M. W., Weiss, S., Chli, M., & Siegwart, R., A robust and modular multi-sensor fusion approach applied to mav navigation, in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3923-3929, 2013.
https://doi.org/10.1109/IROS.2013.6696917

Silano, G., & Iannelli, L., CrazyS: A software-in-the-loop simulation platform for the crazyflie 2.0 nano-Quadcopter, Robot Operating System (ROS), Springer, Cham, pp. 81-115, 2020.
https://doi.org/10.1007/978-3-030-20190-6_4

Silano, G., Aucone, E., & Iannelli, L., CrazyS: a software-in-the-loop platform for the Crazyflie 2.0 nano-quadcopter, 26th Mediterranean Conference on Control and Automation (MED), pp. 1-6, 2018.
https://doi.org/10.1109/MED.2018.8442759

C. Luis and J. Le Ny, Design of a Trajectory Tracking Controller for a Nanoquadcopter, 'Ecole Polytechnique de Montr'eal, Tech. Rep.,2016.
https://arxiv.org/pdf/1608.05786.pdf

Subramanian GP, Nonlinear control strategies for quadrotors and CubeSats, Master's Thesis, University of Illinois at Urbana, Champaign, 2015.
http://hdl.handle.net/2142/88078

Nithya, M., & Rashmi, M. R., Gazebo-ROS-Simulink Framework for Hover Control and Trajectory Tracking of Crazyflie 2.0', TENCON IEEE Region 10 Conference, India, pp. 649-653, 2019.
https://doi.org/10.1109/TENCON.2019.8929730

MathWorks, Robotics System Toolbox, MathWorks official website.
https://www.mathworks.com/products/robotics.html

G. Silano, CrazyS wiki, GitHub.
https://github.com/gsilano/CrazyS/wiki/Interfacing-CrazyS-through-MATLAB


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize