Open Access Open Access  Restricted Access Subscription or Fee Access

Physiology-Compliant Empirical Model for Glycemia Prediction


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v14i6.21283

Abstract


This paper is primarily focused on the problem of maximizing glycemia prediction accuracy for the type 1 diabetic subjects, particularly if the linear empirical models are used. The two-input Box-Jenkins model has been preferred since its structure reflects the actual differences in the dynamics of the insulin administration and the carbohydrates intake inputs. Additionally, the basal state of the subject was integrated directly into to model yielding the ability to estimate the basal glycemia within the identification procedure. Since it is common to experience issues with the physiology compliance of empirical models, it was proposed to perform the multi-step-ahead predictive identification of the zero-pole-gain representation with applied constraints. The effect of the excitation signals on the quality of estimated models has also been marginally analyzed, concluding that applying the variable insulin-carbohydrates ratio between individual insulin boluses is a suitable strategy.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


T1DM; Diabetes Mellitus; Prediction; Empirical Model; Predictive Identification; Box-Jenkins Model; In-Silico Experiment; Clarke Error Grid

Full Text:

PDF


References


C. Fabris and B. Kovatchev, Glucose Monitoring Devices: Measuring Blood Glucose to Manage and Control Diabetes. Academic Press, 2020. [Online]. Available:
https://doi.org/10.1016/C2018-0-00515-0

H. Kirchsteiger, J. Jørgensen, E. Renard, and L. del Re, Eds., Prediction Methods for Blood Glucose Concentration: Design, Use and Evaluation, ser. Lecture Notes in Bioengineering. Springer, 2016.
https://doi.org/10.1007/978-3-319-25913-0

C. Toffanin, E. M. Aiello, C. Cobelli, and L. Magni, Hypoglycemia prevention via personalized glucose-insulin models identified in freeliving conditions, Journal of Diabetes Science and Technology, vol. 13, pp. 1008 - 1016, 2019.
https://doi.org/10.1177/1932296819880864

R. Sánchez-Peña and D. Chernavvsky, Artificial Pancreas: Current Situation and Future Directions. Academic Press, 04 2019.

C. K. Boughton and R. Hovorka, Advances in artificial pancreas systems, Science Translational Medicine, vol. 11, 2019.
https://doi.org/10.1126/scitranslmed.aaw4949

C. Toffanin, L. Magni, and C. Cobelli, Artificial pancreas: In silico study shows no need of meal announcement and improved time in range of glucose with intraperitoneal vs. subcutaneous insulin delivery, IEEE Transactions on Medical Robotics and Bionics, vol. 3, pp. 306-314, 2021.
https://doi.org/10.1109/TMRB.2021.3075775

Škultéty, J., Miklovičová, E., Bars, R., Predictive Control Based on Discrete Laguerre Network, (2013) International Review of Automatic Control (IREACO), 6 (5), pp. 558-588.

Ilka, A., Ottinger, I., Ludwig, T., Tárník, M., Veselý, V., Miklovičová, E., Murgaš, J., Robust Controller Design for T1DM Individualized Model:Gain-Scheduling Approach, (2015) International Review of Automatic Control (IREACO), 8 (2), pp. 155-162.
https://doi.org/10.15866/ireaco.v8i2.5554

D. Romeres, M. Schiavon, A. Basu, C. Cobelli, R. Basu, and C. D. Man, Exercise effect on insulin-dependent and insulin-independent glucose utilization in healthy and type 1 diabetes individuals. a modeling study. American journal of physiology. Endocrinology and metabolism, 2021.
https://doi.org/10.1152/ajpendo.00084.2021

H. Kirchsteiger, S. Pölzer, R. Johansson, E. Renard, and L. del Re, Direct continuous time system identification of miso transfer function models applied to type 1 diabetes, in 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 5176-5181.
https://doi.org/10.1109/CDC.2011.6161344

H. Kirchsteiger, G. C. Estrada, S. Pölzer, E. Renard, and L. del Re, Estimating interval process models for type 1 diabetes for robust control design, IFAC Proceedings Volumes, vol. 44, no. 1, pp. 11 761- 11 766, 2011, 18th IFAC World Congress.
https://doi.org/10.3182/20110828-6-IT-1002.03770

M. Tárník, V. Bátora, J. B. Jørgensen, D. Boiroux, E. Miklovičová, T. Ludwig, I. Ottinger, and J. Murgaš, Remarks on models for estimating the carbohydrate to insulin ratio and insulin sensitivity in t1dm, in 2015 European Control Conference (ECC), 2015, pp. 31-36.
https://doi.org/10.1109/ECC.2015.7330521

M. Cescon and R. Johansson, Glycemic trend prediction using empirical model identification, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009, pp. 3501-3506.
https://doi.org/10.1109/CDC.2009.5400219

D. Finan, C. C. Palerm, F. Doyle, D. Seborg, H. Zisser, W. Bevier, and L. Jovanovic, Effect of input excitation on the quality of empirical dynamic models for type 1 diabetes, Aiche Journal, vol. 55, pp. 1135-1146, 2009.
https://doi.org/10.1002/aic.11699

F. Ståhl and R. Johansson, Diabetes mellitus modeling and short-term prediction based on blood glucose measurements, Mathematical Biosciences, vol. 217, no. 2, pp. 101 - 117, 2009.
https://doi.org/10.1016/j.mbs.2008.10.008

Rebro, M., Tárník, M., Murgaš, J., Glycemia Prediction Accuracy of Simple Linear Models with Online Parameter Identification, (2016) International Review on Modelling and Simulations (IREMOS), 9 (5), pp. 367-373.
https://doi.org/10.15866/iremos.v9i5.10171

Tárník, M., Bátora, V., Ludwig, T., Ottinger, I., Miklovičová, E., Murgaš, J., Prediction of Glycemia Based on Diabetes Self-Monitoring Data, (2015) International Review of Automatic Control (IREACO), 8 (2), pp. 113-119.
https://doi.org/10.15866/ireaco.v8i2.5232

M. Messori, C. Toffanin, S. D. Favero, G. D. Nicolao, C. Cobelli, and L. Magni, Model individualization for artificial pancreas, Computer methods and programs in biomedicine, vol. 171, pp. 133-140, 2019.
https://doi.org/10.1016/j.cmpb.2016.06.006

Triqui, B., Benyettou, A., Diabetes Prediction Using Feature Selection, (2021) International Journal on Engineering Applications (IREA), 9 (2), pp. 94-103.
https://doi.org/10.15866/irea.v9i2.20471

L. Magni, D. Raimondo, C. D. Man, G. De Nicolao, B. Kovatchev, and C. Cobelli, Model predictive control of glucose concentration in subjects with type 1 diabetes: an in silico trial, IFAC Proceedings Volumes, vol. 41, no. 2, pp. 4246 - 4251, 2008, 17th IFAC World Congress.
https://doi.org/10.3182/20080706-5-KR-1001.00714

S. Schmidt and K. Nørgaard, Bolus calculators, Journal of diabetes science and technology, vol. 8, 05 2014.
https://doi.org/10.1177/1932296814532906

C. Toffanin, E. M. Aiello, S. D. Favero, C. Cobelli, and L. Magni, Multiple models for artificial pancreas predictions identified from freeliving condition data: A proof of concept study, Journal of Process Control, vol. 77, pp. 29-37, 2019.
https://doi.org/10.1016/j.jprocont.2019.03.007

J. D. Hoyos, M. F. Villa-Tamayo, C. Builes-Montaño, A. Ramírez-Rincón, J. L. Godoy, J. Garcia-Tirado, and P. Rivadeneira, Identifiability of control-oriented glucose-insulin linear models: Review and analysis, IEEE Access, vol. 9, pp. 69 173-69 188, 2021.
https://doi.org/10.1109/ACCESS.2021.3076405

C. Boughton, S. Hartnell, J. Allen, and R. Hovorka, The importance of prandial insulin bolus timing with hybrid closed-loop systems, Diabetic Medicine, vol. 36, pp. 1716 - 1717, 2019.
https://doi.org/10.1111/dme.14116

M. Schiavon, C. D. Man, and C. Cobelli, Physiology-based run-to-run adaptation of insulin to carbohydrate ratio improves type 1 diabetes therapy: Results from an in silico study, 2019 American Control Conference (ACC), pp. 4124-4129, 2019.
https://doi.org/10.23919/ACC.2019.8814915

H. Kirchsteiger and L. del Re, A model based bolus calculator for blood glucose control in type 1 diabetes, in 2014 American Control Conference, 2014, pp. 5465-5470.
https://doi.org/10.1109/ACC.2014.6858980

R. Haber, R. Bars, and U. Schmitz, Predictive Equations of Linear SISO Models. John Wiley & Sons, Ltd, 2011, ch. 3, pp. 55-101.
https://doi.org/10.1002/9783527636242.ch3

C. Dalla Man, R. Rizza, and C. Cobelli, Mixed meal simulation model of glucose-insulin system, in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06, ser. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, pp. 307-310.

C. Dalla Man, R. A. Rizza, and C. Cobelli, "Meal simulation model of the glucose-insulin system, IEEE Transactions on Biomedical Engineering, vol. 54, no. 10, pp. 1740-1749, 2007.
https://doi.org/10.1109/TBME.2007.893506

L. Magni, D. M. Raimondo, L. Bossi, C. D. Man, G. D. Nicolao, B. Kovatchev, C. Cobelli, Model predictive control of type 1 diabetes: An in silico trial, Journal of Diabetes Science and Technology, vol. 1, no. 6, pp. 804-812, 2007.
https://doi.org/10.1177/193229680700100603

C. Cobelli, C. Dalla Man, G. Sparacino, L. Magni, G. De Nicolao, and B. P. Kovatchev, Diabetes: Models, signals, and control, IEEE Reviews in Biomedical Engineering, vol. 2, pp. 54-96, 2009.
https://doi.org/10.1109/RBME.2009.2036073

C. D. Man, D. M. Raimondo, R. A. Rizza, and C. Cobelli, Gim, simulation software of meal glucose-insulin model, Journal of Diabetes Science and Technology, vol. 1, no. 3, pp. 323-330, 2007.
https://doi.org/10.1177/193229680700100303

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L.Pohl, Evaluating clinical accuracy of systems for self-monitoring of blood glucose, Diabetes Care, vol. 10, no. 5, pp. 622-628, 1987.
https://doi.org/10.2337/diacare.10.5.622


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize