Open Access Open Access  Restricted Access Subscription or Fee Access

Design and Characterization of a New Soft Fingertip Force Sensor for Precision Robotic Grasping Task


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v14i2.20735

Abstract


Nowadays, a new robotic field has emerged, called Soft Robotics, and it is a new field that involves new challenges, such as soft manipulation, considering external force measure or contact sensors. Thus, in this paper, a new soft fingertip force sensor is introduced. The methodology proposed consists in a quantitative applied research aiming to propose a device able to detect and measure external applied forces. In order to reach the above target, the following steps have been performed: i.) requirements identification, ii) transductor selection, ii) rigid structure design, iii.) soft structure design, iv.) definition of variables parameters for sensor characterization, v.) implementation of the experiments to quantify the relation between external forces and output voltage for different operation conditions, and vi.) proposition of the mathematical model. The mathematical model is defined to describe applied external force and sensor output voltage, demonstrating different mathematical models for two soft materials (polyaddition and polycondensation silicones). It has been found out that using a softer silicone increases the sensor sensitivity. However, the selection of silicone depends on the application requirements. Moreover, the use of soft materials gives a high compliance level with contact objects. On the other hand, a new sensor structure that could be implemented using a 3D print and a FSR traductor, easily implemented by a 3D Printer, has been proposed. Then the mathematical model presented could be used by researchers Moreover, researchers could modify the parameters explained in order to obtain different soft sensor performance. Thus, the soft sensor is endowed with versatility, compliance, and molding.
Copyright © 2021 Praise Worthy Prize - All rights reserved.

Keywords


Dexterous Manipulators; Human Hand Interaction; Force Sensors; Tactile Sensors; Soft Tactile Sensors; Soft Body; Soft Manipulation; Soft Robotics; Elastic Materials

Full Text:

PDF


References


A. Phinyomark, C. Limsakul y P. Phukpattaranont, Wavelet-based Denoising Algorithm for Robust EMG Pattern Recognition, Fluctuation and Noise Letters, vol. 10, n. 02, pp. 157-167, 06 2011.
https://doi.org/10.1142/s0219477511000466

Costanzo, M., G. De Maria, C. Natale & S. Pirozzi (2019) Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation. Sensors, 19.
https://doi.org/10.3390/s19040966

Zhang, Y. Z., Z. C. Kan, Y. Yang, Y. A. Tse & M. Y. Wang (2019) Effective Estimation of Contact Force and Torque for Vision-Based Tactile Sensors with Helmholtz-Hodge Decomposition. IEEE Robotics and Automation Letters, 4, 4094-4101.
https://doi.org/10.1109/lra.2019.2930477

Mei, T., W. J. Li, Y. Ge, Y. Chen, L. Ni & M. H. Chan (2000) An integrated MEMS three-dimensional tactile sensor with large force range. Sensors and Actuators a-Physical, 80, 155-162.
https://doi.org/10.1016/s0924-4247(99)00261-7

Chen T., Wang Y., Lo C. and Chen R.,"Friction-Assisted Pulling Force Detection Mechanism for Tactile Sensors, in Journal of Microelectromechanical Systems, vol. 23, no. 2, pp. 471-481, April 2014.
https://doi.org/10.1109/jmems.2013.2280149

Lu Q., He L., Nanayakkara T. and Rojas N., Precise In-Hand Manipulation of Soft Objects using Soft Fingertips with Tactile Sensing and Active Deformation, 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), 2020, pp. 52-57.
https://doi.org/10.1109/robosoft48309.2020.9115997

I. Fujii, T. Inoue, D. V. Dao, S. Sugiyama and S. Hirai, Tactile Perception using Micro Force/Moment Sensor Embedded in Soft Fingertip, Sensors, 2006 IEEE, Daegu, Korea (South), 2006, pp. 558-562.
https://doi.org/10.1109/icsens.2007.355529

S. Azim et al., Soft tactile sensors with variable compliance, 2017 IEEE Sensors, Glasgow, UK, 2017, pp. 1-3.
https://doi.org/10.1109/ICSENS.2017.8234097

T. Kawasetsu, R. Niiyama and Y. Kuniyoshi, Flexible and Soft Inductive Tri-axis Tactile Sensor Using Liquid Metal as Sensing Target, 2019 IEEE Sensors, Montreal, QC, Canada, 2019, pp. 1-4.
https://doi.org/10.1109/sensors43011.2019.8956736

T. Usui, H. Ishizuka, T. Kawasetsu, K. Hosoda, S. Ikeda and O. Oshiro, Soft Tactile Sensor Detecting Air-Water Interface, 2020 IEEE Sensors, Rotterdam, Netherlands, 2020, pp. 1-4.
https://doi.org/10.1109/sensors47125.2020.9278734

Hou T., Yang X., Aiyama Y., Liu K., Wang Z., Wang T., Liang J., Fan Y., Design, and experiment of a universal two-fingered hand with soft fingertips based on jamming effect, Mechanism and Machine Theory, 133, 2019, 706-719, ISSN 0094-114X
https://doi.org/10.1016/j.mechmachtheory.2018.12.013

Qi J., Feng J., Design of robotic soft fingertip for contact sensing, Measurement, 147, 2019, 106812, ISSN 0263-2241.
https://doi.org/10.1016/j.measurement.2019.07.040

Fasoulas J., Sfakiotakis M., Modeling and Control for Object Manipulation by a Two d.o.f. Robotic Hand with Soft Fingertips, IFAC Proceedings Volumes, 45, Issue 22, 2012,259-264, ISSN 1474-6670.
https://doi.org/10.3182/20120905-3-hr-2030.00097

Cheng, N., J. H. Low, B. W. K. Ang, A. J. Y. Goh & C. H. Yeow (2019) Soft Fabric-Based Pneumatic Sensor for Bending Angles and Contact Force Detection. IEEE Sensors Journal, 19, 1269-1279.
https://doi.org/10.1109/jsen.2018.2882796

Takizawa, T., T. Kanno, R. Miyazaki, K. Tadano & K. Kawashima (2018) Grasping force estimation in robotic forceps using a soft pneumatic actuator with a built-in sensor. Sensors and Actuators a-Physical, 271, 124-130.
https://doi.org/10.1016/j.sna.2018.01.007

Mohammadi, A., Y. M. Xu, Y. Tan, P. Choong & D. Oetomo (2019) Magnetic-based Soft Tactile Sensors with Deformable Continuous Force Transfer Medium for Resolving Contact Locations in Robotic Grasping and Manipulation. Sensors, 19.
https://doi.org/10.3390/s19224925

Mirzanejad, H. & M. Agheli (2019) Soft force sensor made of magnetic powder blended with silicone rubber. Sensors and Actuators a-Physical, 293, 108-118.
https://doi.org/10.1016/j.sna.2019.04.021

Dwivedi, A., A. Ramakrishnan, A. Reddy, K. Patel, S. Ozel & C. D. Onal (2018) Design, Modeling, and Validation of a Soft Magnetic 3-D Force Sensor. IEEE Sensors Journal, 18, 3852-3863.
https://doi.org/10.1109/jsen.2018.2814839

Ribeiro, P., M. A. Khan, A. Alfadhel, J. Kosel, F. Franco, S. Cardoso, A. Bernardino, A. Schmitz, J. Santos-Victor & L. Jamone (2017) Bioinspired Ciliary Force Sensor for Robotic Platforms. IEEE Robotics and Automation Letters, 2, 971-976.
https://doi.org/10.1109/lra.2017.2656249

Wang, Y. C., Y. T. Lu, D. Q. Mei & L. F. Zhu (2021) Liquid Metal-Based Wearable Tactile Sensor for Both Temperature and Contact Force Sensing. IEEE Sensors Journal, 21, 1694-1703.
https://doi.org/10.1109/jsen.2020.3015949

Yin, J. Z., P. Aspinall, V. J. Santos & J. D. Posner (2018) Measuring Dynamic Shear Force and Vibration With a Bioinspired Tactile Sensor Skin. IEEE Sensors Journal, 18, 3544-3553.
https://doi.org/10.1109/jsen.2018.2811407

Yin, J. Z., V. J. Santos & J. D. Posner (2017) Bioinspired flexible microfluidic shear force sensor skin. Sensors and Actuators a-Physical, 264, 289-297.
https://doi.org/10.1016/j.sna.2017.08.001

Wong, R. D. P., J. D. Posner & V. J. Santos (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sensors and Actuators a-Physical, 179, 62-69.
https://doi.org/10.1016/j.sna.2012.03.023

Navarro, S. E., S. Nagels, H. Alagi, L. M. Faller, O. Goury, T. Morales-Bieze, H. Zangl, B. Hein, R. Ramakers, W. Deferme, G. Zheng & C. Duriez (2020) A Model-Based Sensor Fusion Approach for Force and Shape Estimation in Soft Robotics. IEEE Robotics and Automation Letters, 5, 5621-5628.
https://doi.org/10.1109/lra.2020.3008120

Zou, X. Y., T. F. Liang, N. Lopez, M. Ahmed, A. Ajayan & A. D. Mazzeo (2017) Arrayed Force Sensors Made of Paper, Elastomer, and Hydrogel Particles. Micromachines, 8.
https://doi.org/10.3390/mi8120356

Cao, P. J., Y. W. Liu, W. Asghar, C. Hu, F. L. Li, Y. Z. Wu, Y. Y. Li, Z. Yu, S. B. Li, J. Shang, X. C. Liu & R. W. Li (2020) A Stretchable Capacitive Strain Sensor Having Adjustable Elastic Modulus Capability for Wide-Range Force Detection. Advanced Engineering Materials, 22.
https://doi.org/10.1002/adem.202070011

Noh, Y., S. Han, P. Gawenda, W. L. Li, S. Sareh & K. Rhode (2020) A Contact Force Sensor Based on S-Shaped Beams and Optoelectronic Sensors for Flexible Manipulators for Minimally Invasive Surgery (MIS). IEEE Sensors Journal, 20, 3487-3495.
https://doi.org/10.1109/jsen.2019.2945163

Tiziani, L. O. & F. L. Hammond (2020) Optical Sensor-Embedded Pneumatic Artificial Muscle for Position and Force Estimation. Soft Robotics, 7, 462-477.
https://doi.org/10.1089/soro.2019.0019

Massari, L., E. Schena, C. Massaroni, P. Saccomandi, A. Menciassi, E. Sinibaldi & C. M. Oddo (2020) A Machine-Learning-Based Approach to Solve Both Contact Location and Force in Soft Material Tactile Sensors. Soft Robotics, 7, 409-420.
https://doi.org/10.1089/soro.2018.0172

Llamosi, A. & S. Toussaint (2019) Measuring Force Intensity and Direction with a Spatially Resolved Soft Sensor for Biomechanics and Robotic Haptic Capability. Soft Robotics, 6, 346-355.
https://doi.org/10.1089/soro.2018.0044

Yuan, W. Z., S. Y. Dong & E. H. Adelson (2017) GelSight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force. Sensors, 17.
https://doi.org/10.3390/s17122762

Medjahdi, N., Benmoussa, N., Benichou, A., Otmani, R., Modeling and Simulation of the Mechanical and Electrical Response of the Piezoresistive Force Sensor, (2019) International Review on Computers and Software (IRECOS), 14 (2), pp. 44-48.
https://doi.org/10.15866/irecos.v14i2.19286

Nadjia, M., Eddine, B., Abdelkader, B., Radouane, O., Modeling and Simulation of the Mechanical and Electrical Response of the Piezoresistive Force Sensor, (2013) International Journal on Information Technology (IREIT), 1 (4), pp. 252-256.

Lin, M. H., M. Vatani, J. W. Choi, S. Dilibal & E. D. Engeberg (2020) Compliant underwater manipulator with integrated tactile sensor for nonlinear force feedback control of an SMA actuation system. Sensors and Actuators a-Physical, 315.
https://doi.org/10.1016/j.sna.2020.112221

Ramirez, J., Rubiano, A. and Cogollo, J., 2019. Characterization of smart materials requirements for actuation in the robotic applications. Journal of Physics: Conference Series, 1386, p.012073.
https://doi.org/10.1088/1742-6596/1386/1/012073

Ramírez, J.L.; Rubiano, A.; Jouandeau, N.; Gallimard, L.; Polit, O. Artificial Muscles Design Methodology Applied to Robotic Fingers. In Smart Structures and Materials; Araujo, A., Mota Soares, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 209–225.
https://doi.org/10.1007/978-3-319-44507-6_11

Ramírez, J.L.; Rubiano, A.; Jouandeau, N.; Gallimard, L.; Polit, O. New Morphological Optimization of Prosthesis’ Finger for Precision Grasping. In New Trends in Medical and Service Robots: Human Centered Analysis, Control and Design; Wenger, P., Chevallereau, C., Pisla, D., Bleuler, H., Rudi’s, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 249–263.
https://doi.org/10.1007/978-3-319-30674-2_19

Ramirez, J.; Rubiano, A.; Castiblanco, P. Soft Driving Epicyclical Mechanism for Robotic Finger. Actuators 2019, 8, 58.
https://doi.org/10.3390/act8030058

Dilibal, S., H. Sahin, J. O. Danquah, M. O. F. Emon & J. W. Choi (2021) Additively Manufactured Custom Soft Gripper with Embedded Soft Force Sensors for an Industrial Robot. International Journal of Precision Engineering and Manufacturing, 22, 709-718.
https://doi.org/10.1007/s12541-021-00479-0

Leal, A. G., C. Marques, M. R. N. Ribeiro, M. J. Pontes & A. Frizera (2018) FBG-Embedded 3-D Printed ABS Sensing Pads: The Impact of Infill Density on Sensitivity and Dynamic Range in Force Sensors. IEEE Sensors Journal, 18, 8381-8388.
https://doi.org/10.1109/jsen.2018.2866689

Jing Q., Pace A., Ives L., Husmann A., Ćatić N., Khanduja V., Cama V., Kar-Narayan S., Aerosol-jet-printed, conformable microfluidic force sensors, Cell Reports Physical Science, 2, Issue 4, 2021, 100386, ISSN 2666-3864,
https://doi.org/10.1016/j.xcrp.2021.100386

Li H., Fang X., Ruihuan Li, Bin Liu, Heng Tang, Xinrui Ding, Yingxi Xie, Rui Zhou, Guofu Zhou, Yong Tang, All-printed soft triboelectric nanogenerator for energy harvesting and tactile sensing, Nano Energy, 78, 2020, 105288, ISSN 2211-2855,
https://doi.org/10.1016/j.nanoen.2020.105288

Ji Z., Yan C., Ma S., Gorb S., Jia X., Yu B., Wang X., Zhou F., 3D printing of bioinspired topographically oriented surfaces with frictional anisotropy for directional driving, Tribology International, 132, 2019, 99-107, ISSN 0301-679X,
https://doi.org/10.1016/j.triboint.2018.12.010

Korolovych V. F:, Cherpak V., Nepal D., Ng A., Shaikh N. R., Grant A., Xiong R., Bunning T. J., Tsukruk V. V:, Cellulose nanocrystals with different morphologies and chiral properties, Polymer, 145, 2018, Pages 334-347, ISSN 0032-3861,
https://doi.org/10.1016/j.polymer.2018.04.064

Lin M., Vatani M., Choi J., Dilibal S., Engeberg E. D., Compliant underwater manipulator with integrated tactile sensor for nonlinear force feedback control of an SMA actuation system, Sensors and Actuators A: Physical, 315, 2020, 112221, ISSN 0924-4247.
https://doi.org/10.1016/j.sna.2020.112221

Robinson S. S:, O’Brien K. W:, Zhao H., Peele B. N., Larson C. M., Mac Murray B. C:, Van Meerbeek I. M:, Dunham S. N., Shepherd R. F., Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense, Extreme Mechanics Letters, 5, 2015, 47-53, ISSN 2352-4316.
https://doi.org/10.1016/j.eml.2015.09.005

Arnaldo G. Leal-Junior, Camilo R. Díaz, Maria José Pontes, Carlos Marques, Anselmo Frizera, Polymer optical fiber-embedded, 3D-printed instrumented support for microclimate and human-robot interaction forces assessment, Optics & Laser Technology, 112, 2019, Pages 323-331, ISSN 0030-3992,
https://doi.org/10.1016/j.optlastec.2018.11.044

Setiawan, J., Ariyanto, M., Nugroho, S., Munadi, M., Ismail, R., A Soft Exoskeleton Glove Incorporating Motor-Tendon Actuator for Hand Movements Assistance, (2020) International Review of Automatic Control (IREACO), 13 (1), pp. 1-11.
https://doi.org/10.15866/ireaco.v13i1.18274

Ramírez, J. L. and Rubiano, A. and Jouandeau, N. and El korso, M. N. and Gallimard, L. and Polit, O. Hybrid kinematic model applied to the under-actuated robotic hand prosthesis ProMain-I and experimental evaluation. Proceedings of 14th IEEE International Conference on Rehabilitation Robotics (ICORR). 2015.
https://doi.org/10.1109/icorr.2015.7281216

Yap H, Ng H, Yeow C. High-Force Soft Printable Pneumatics for Soft Robotic Applications. Soft Robot. 2016;3(3):144-158
https://doi.org/10.1089/soro.2016.0030

Jin G., Sun Y., Geng J., Yuan X., Chen T., Liu H., Wang F., Sun L., Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal, Nano Energy, 84, 2021, 105896, ISSN 2211-2855.
https://doi.org/10.1016/j.nanoen.2021.105896

Coyle S., Majidi C., LeDuc P., Hsia K. J., Bio-inspired soft robotics: Material selection, actuation, and design, Extreme Mechanics Letters, 22, 2018, 51-59, ISSN 2352-4316.
https://doi.org/10.1016/j.eml.2018.05.003

Kuppuswamy N., Carbajal J.P., Learning a Curvature Dynamic Model of an Octopus-inspired Soft Robot Arm Using Flexure Sensors, Procedia Computer Science, 7, 2011, 294-296, ISSN 1877-0509.
https://doi.org/10.1016/j.procs.2011.09.046

Kim S., Laschi C., Trimmer B., Soft robotics: a bioinspired evolution in robotics, Trends in Biotechnology, 31, Issue 5, 2013, 287-294, ISSN 0167-7799.
https://doi.org/10.1016/j.tibtech.2013.03.002

Washington A, Neubauer J, Kim K J, Chapter 3 - Soft actuators and their potential applications in rehabilitative devices, Editor(s): Amir Jafari, Nafiseh Ebrahimi, Soft Robotics in Rehabilitation, Academic Press, 2021, 89-110, ISBN 9780128185384.
https://doi.org/10.1016/b978-0-12-818538-4.00003-4

Tang C., Li B., Fang H., Li Z., Chen H., A speedy, amphibian, robotic cube: Resonance actuation by a dielectric elastomer, Sensors and Actuators A: Physical, 270, 2018, 1-7, ISSN 0924-4247.
https://doi.org/10.1016/j.sna.2017.12.003

Oguntosin V., Akindele A., Design and characterization of artificial muscles from wedge-like pneumatic soft modules, Sensors and Actuators A: Physical, 297, 2019, 111523, ISSN 0924-4247.
https://doi.org/10.1016/j.sna.2019.07.047

Hu H, Tian Q, Liu C, Soft Machines: Challenges to Computational Dynamics, Procedia IUTAM, 20, 2017, 10-17, ISSN 2210-9838.
https://doi.org/10.1016/j.piutam.2017.03.003

Lin Z., Hess A., Yu Z., Cai S., Gao T., A fluid–structure interaction study of soft robotic swimmer using a fictitious domain/active-strain method, Journal of Computational Physics, 376, 2019, 1138-1155, ISSN 0021-9991.
https://doi.org/10.1016/j.jcp.2018.10.015

Kobayashi Y., Harada K., Takagi K., Automatic controller generation based on dependency network of multi-modal sensor variables for musculoskeletal robotic arm, Robotics and Autonomous Systems, 118, 2019, 55-65, ISSN 0921-8890.
https://doi.org/10.1016/j.robot.2019.04.010

Ju Y., Hu R., Xie Y., Yao Y., Li X., Lv Y., Han X., Cao Q., Li L, Reconfigurable Magnetic Soft Robots with Multimodal Locomotion, Nano Energy, 2021, 106169, ISSN 2211-2855.
https://doi.org/10.1016/j.nanoen.2021.106169

Song S.E, Chapter 34 - Robotic interventions, Editor(s): S. Kevin Zhou, Daniel Rueckert, Gabor Fichtinger, In The Elsevier and MICCAI Society Book Series, Handbook of Medical Image Computing and Computer Assisted Intervention, Academic Press, 2020, 841-860, ISBN 9780128161760
https://doi.org/10.1016/b978-0-12-816176-0.00039-9

Cao J., Qin L., Liu J., Ren Q., Foo C.C., Wang H., Lee H.P., Zhu J., Untethered soft robot capable of stable locomotion using soft electrostatic actuators, Extreme Mechanics Letters, 21, 2018, 9-16, ISSN 2352-4316.
https://doi.org/10.1016/j.eml.2018.02.004

Rubiano A., Doctoral Thesis, Smart control of a soft robotic hand prosthesis, 2016, Nanterre Paris University, France, Paris.

P. Righettini and R. Strada, Driving Technologies for the Design of Additive Manufacturing Systems, HighTech and Innovation Journal, 2, no. 1, pp. 20-28, 2021.
https://doi.org/10.28991/hij-2021-02-01-03

G. Innella and P. Rodgers, The Benefits of a Convergence between Art and Engineering, HighTech and Innovation Journal, 2, no. 1, pp. 29-37, 2021.
https://doi.org/10.28991/hij-2021-02-01-04

V. Vikulov, A. Todorov, A. Faustov and N. Lvov, Selection of the Optimal FBG Length for Use in Stress-Strain State Diagnostic Systems, Civil Engineering Journal, 5, no. 12, pp. 2700-2707, 2019.
https://doi.org/10.28991/cej-2019-03091442


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize