A Hybrid PSO-GWO Algorithm for Robot Path Planning in Uncertain Environments
(*) Corresponding author
DOI: https://doi.org/10.15866/ireaco.v14i6.20045
Abstract
Path planning is one of the most critical tasks in mobile robotics. This paper proposes a hybridization of two algorithms for optimizing the trajectory planning a mobile robot and ensuring its navigation in a partially known environment containing static obstacles. The Grey Wolf Optimization (GWO) algorithm, which has some challenges such as slow convergence and low accuracy, is combined with the Particle Swarm Optimization (PSO) algorithm for its high convergence speed and accuracy. The hybrid PSO-GWO algorithm is proposed so that the optimal trajectory search procedure balances global and local search capabilities, taking advantage of the capacities of both GWO and PSO approaches. The validity of PSO-GWO performance has been tested for various scenarios using the mobile robot Khepera-iv and the simulation software of MATLAB and V-REP. Then, it has revealed that this method can offer a better search for an optimal trajectory when compared to other algorithms such as GWO, PSO, and Fuzzy-Logic. For implementing the PSO-GWO algorithm on Khepera-iv, a simple Extended Kalman Filter (EKF) is developed to locate the mobile robot, in its realistic environment, by fusing data from different sensors.
Copyright © 2021 Praise Worthy Prize - All rights reserved.
Keywords
Full Text:
PDFReferences
S. Sedighi, D.-V. Nguyen, P. Kapsalas, and K.-D. Kuhnert, Implementing Voronoi-based Guided Hybrid A* in Global Path Planning for Autonomous Vehicles, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 3845-3852.
https://doi.org/10.1109/ITSC.2019.8917427
U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, Mobile robot path planning using membrane evolutionary artificial potential field, Appl. Soft Comput., vol. 77, pp. 236-251, 2019.
https://doi.org/10.1016/j.asoc.2019.01.036
S. M. H. Rostami, A. K. Sangaiah, J. Wang, and X. Liu, Obstacle avoidance of mobile robots using modified artificial potential field algorithm, EURASIP J. Wirel. Commun. Netw., vol. 2019, no. 1, p. 70, 2019.
https://doi.org/10.1186/s13638-019-1396-2
Z. Nie and H. Zhao, Research on Robot Path Planning Based on Dijkstra and Ant Colony Optimization, in 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), 2019, pp. 222-226.
https://doi.org/10.1109/ICIIBMS46890.2019.8991502
B. K. Patle, G. B. L, A. Pandey, D. R. K. Parhi, and A. Jagadeesh, A review : On path planning strategies for navigation of mobile robot, Def. Technol., vol. 15, no. 4, pp. 582-606, 2019.
https://doi.org/10.1016/j.dt.2019.04.011
Maarif, A., Iskandar, S., Iswanto, I., New Design of Line Maze Solving Robot with Speed Controller and Short Path Finder Algorithm, (2019) International Review of Automatic Control (IREACO), 12 (3), pp. 154-162.
https://doi.org/10.15866/ireaco.v12i3.16501
El Kari, B., Ayad, H., El Kari, A., Mjahed, M., Pozna, C., Design and FPGA Implementation of a New Intelligent Behaviors Fusion for Mobile Robot Using Fuzzy Logic, (2019) International Review of Automatic Control (IREACO), 12 (1), pp. 1-10.
https://doi.org/10.15866/ireaco.v12i1.14802
Basjaruddin, N., Rakhman, E., Firdaus, R., Kuspriyanto, K., Simple Hand Gesture Recognition Based on Fuzzy Logic for Controlling Mobile Robot, (2019) International Review of Automatic Control (IREACO), 12 (2), pp. 89-94.
https://doi.org/10.15866/ireaco.v12i2.16693
K. El Hamidi, M. Mjahed, A. El Kari, and H. Ayad, Neural Network and Fuzzy-logic-based Self-tuning PID Control for Quadcopter Path Tracking, Stud. Informatics Control, vol. 28, no. 4, pp. 401-412, 2019.
https://doi.org/10.24846/v28i4y201904
B. Pradhan, A. Nandi, N. B. Hui, D. S. Roy, and J. J. P. C. Rodrigues, A Novel Hybrid Neural Network-Based Multirobot Path Planning With Motion Coordination, IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1319-1327, 2020.
https://doi.org/10.1109/TVT.2019.2958197
A. Pandey and D. R. Parhi, Optimum path planning of mobile robot in unknown static and dynamic environments using Fuzzy-Wind Driven Optimization algorithm, Def. Technol., vol. 13, no. 1, pp. 47-58, 2017.
https://doi.org/10.1016/j.dt.2017.01.001
T. Zhao, Y. Xiang, S. Dian, R. Guo, and S. Li, Hierarchical interval type-2 fuzzy path planning based on genetic optimization, J. Intell. Fuzzy Syst., no. Preprint, pp. 1-12, 2020.
https://doi.org/10.3233/JIFS-191864
Ali Salman, S., Khasawneh, Q., Jaradat, M., Alramlawi, M., Indoor Navigation System of Omni-Directional Mobile Robot Based on Static Obstacles Avoidance, (2020) International Review of Automatic Control (IREACO), 13 (1), pp. 27-37.
https://doi.org/10.15866/ireaco.v13i1.18346
Likhouzova, T., Demianova, Y., Robotic Warehouse Management System, (2021) International Review of Automatic Control (IREACO), 14 (1), pp. 12-16.
https://doi.org/10.15866/ireaco.v14i1.19993
S. Pattanayak, S. Agarwal, B. B. Choudhury, and S. C. Sahoo, Path planning of mobile robot using PSO algorithm, in Information and Communication Technology for Intelligent Systems, Springer, Singapore, 2019, pp. 515-522.
https://doi.org/10.1007/978-981-13-1742-2_51
V. K. Kamboj, A novel hybrid PSO-GWO approach for unit commitment problem, Neural Comput. Appl., vol. 27, no. 6, pp. 1643-1655, 2016.
https://doi.org/10.1007/s00521-015-1962-4
N. El Gmili, M. Mjahed, A. El Kari, and H. Ayad, Particle swarm optimization based proportional-derivative parameters for unmanned tilt-rotor flight control and trajectory tracking, Automatika, vol. 61, no. 2, pp. 189-206, 2020.
https://doi.org/10.1080/00051144.2019.1698191
Nada El El GmiliMostafa MjahedAbdeljalil El El KariHassan Ayad, Particle Swarm Optimization and Cuckoo Search-Based Approaches for Quadrotor Control and Trajectory Tracking, Appl. Sci., vol. 9, no. 8, p. 1719, 2019.
https://doi.org/10.3390/app9081719
P. K. Mohanty and D. R. Parhi, Cuckoo search algorithm for the mobile robot navigation, in International Conference on Swarm, Evolutionary, and Memetic Computing, 2013, pp. 527-536.
https://doi.org/10.1007/978-3-319-03753-0_47
Ali, H., Taha, A., Hasanien, H., Performance Improvement of Wind Generator Using Hybrid Particle Swarm Algorithm and Grey Wolf Optimizer, (2021) International Journal on Energy Conversion (IRECON), 9 (2), pp. 63-73.
https://doi.org/10.15866/irecon.v9i2.20350
G. Xu, T.-W. Zhang, Q. Lai, J. Pan, B. Fu, and X. Zhao, A new path planning method of mobile robot based on adaptive dynamic firefly algorithm, Mod. Phys. Lett. B, p. 2050322, 2020.
https://doi.org/10.1142/S0217984920503224
N. M. H. Azlan, M. Zain, R. Sallehuddin, and Y. Yusoff, Recent studies on optimisation method of Grey Wolf Optimiser (GWO): a review (2014 - 2017)," Artif. Intell. Rev., 2018.
M. Saraswathi, G. B. Murali, and B. B. V. L. Deepak, Optimal Path Planning of Mobile Robot Using Hybrid Cuckoo Search-Bat Algorithm, Procedia Comput. Sci., vol. 133, pp. 510-517, 2018.
https://doi.org/10.1016/j.procs.2018.07.064
C. Xiong, D. Chen, D. Lu, Z. Zeng, and L. Lian, Path planning of multiple autonomous marine vehicles for adaptive sampling using Voronoi-based ant colony optimization, Rob. Auton. Syst., vol. 115, pp. 90-103, 2019.
https://doi.org/10.1016/j.robot.2019.02.002
Batayneh, W., Aburmaileh, Y., Adeeb, M., Al-Karasneh, A., Smooth 2D Navigation in Hazardous Areas Utilizing a GA-PID Controlled Omnidirectional Mobile Robot with Kinematic Constraint Consideration, (2021) International Review on Modelling and Simulations (IREMOS), 14 (3), pp. 213-220.
https://doi.org/10.15866/iremos.v14i3.20237
E. Masehian and D. Sedighizadeh, A multi-objective PSO-based algorithm for robot path planning, 2010 IEEE International Conference on Industrial Technology, 2010, pp. 465-470.
https://doi.org/10.1109/ICIT.2010.5472755
S. E. Li et al., Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles, Mech. Syst. Signal Process., vol. 98, pp. 173-189, 2018.
https://doi.org/10.1016/j.ymssp.2017.04.041
Hammia, S., Hatim, A., Bouaaddi, A., Najoui, M., Jakjoud, F., Ez-ziymi, S., Efficient EKF-SLAM's Jacobian Matrices Hardware Architecture and its FPGA Implementation, (2021) International Review of Electrical Engineering (IREE), 16 (5), pp. 484-496.
https://doi.org/10.15866/iree.v16i5.20149
J. Y. Lu and X. Li, Robot indoor location modeling and simulation based on Kalman filtering, EURASIP J. Wirel. Commun. Netw., vol. 2019, no. 1, p. 140, 2019.
https://doi.org/10.1186/s13638-019-1462-9
M. N. A. Wahab, C. M. Lee, M. F. Akbar, and F. H. Hassan, Path Planning for Mobile Robot Navigation in Unknown Indoor Environments Using Hybrid PSOFS Algorithm, IEEE Access, vol. 8, pp. 161805-161815, 2020.
https://doi.org/10.1109/ACCESS.2020.3021605
X. Li, D. Wu, J. He, M. Bashir, and M. Liping, An Improved Method of Particle Swarm Optimization for Path Planning of Mobile Robot, J. Control Sci. Eng., vol. 2020, 2020.
https://doi.org/10.1155/2020/3857894
F. Gul, W. Rahiman, S. S. N. Alhady, A. Ali, I. Mir, and A. Jalil, Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO-GWO optimization algorithm with evolutionary programming, J. Ambient Intell. Humaniz. Comput., pp. 1-18, 2020.
https://doi.org/10.1007/s12652-020-02514-w
C. Qu, W. Gai, J. Zhang, and M. Zhong, A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning, Knowledge-Based Syst., vol. 194, no. xxxx, p. 105530, 2020.
https://doi.org/10.1016/j.knosys.2020.105530
Z. T. J. L. L. Guo, An improved hybrid grey wolf optimization algorithm, Soft Comput., 2018.
W. Li, G. Wang, and A. H. Alavi, Knowledge-Based Systems Learning-based elephant herding optimization algorithm for solving numerical optimization problems, Knowledge-Based Syst., vol. 195, p. 105675, 2020.
https://doi.org/10.1016/j.knosys.2020.105675
Refbacks
- There are currently no refbacks.
Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize