Open Access Open Access  Restricted Access Subscription or Fee Access

Tracking AC Signals with Zero Average Dynamics and Fixed Point Induced Control


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v13i2.17637

Abstract


This paper presents the theoretical and the experimental results of a direct current and alternating current buck converter configured as an inverter controlled by zero average dynamics and fixed point induced control techniques. The system is modeled and implemented in an electrical circuit in order to apply the control techniques and the tracking voltage at the output of the alternating current signals. The tests are based on comparing simulation and experimental results in order to identify the robustness of the circuit when subjected to disturbances. The results show that zero average dynamics and fixed point induced control techniques implemented digitally in a digital signal processor meet the requirements of fixed switching frequency, robustness, and good performance in alternating current signal tracking tasks, which are the benefits of this controller. The fixed switching frequency is evidenced in the results related to the non-saturated duty cycle achieving a very good commutation and reducing electromagnetic interferences. For high frequencies, the value of the inductive-capacitive filter should be decreased when tracking alternating current signals; however, this increases ripple in the signal and tracking errors.
Copyright © 2020 Praise Worthy Prize - All rights reserved.

Keywords


Digital Signal Processor; Direct Current-Alternating Current Converter; Fixed Point Induced Control; Nonlinear Control; Rapid Control Prototyping; Zero Average Dynamics

Full Text:

PDF


References


N. Mohan, Advanced electric drives : analysis, control, and modeling using MATLAB/Simulink. Wiley, 2014.
https://doi.org/10.1002/9781118910962

K.-C. Woo, J.-M. Oh, and B.-D. Yang, DC–DC Buck Converter Using Analog Coarse-Fine Self-Tracking Zero-Current Detection Scheme, IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 11, pp. 1850–1854, Nov. 2019.
https://doi.org/10.1109/tcsii.2018.2890267

M. Ahmeid, M. Armstrong, S. Gadoue, M. Al-Greer, and P. Missailidis, Real-Time Parameter Estimation of DC–DC Converters Using a Self-Tuned Kalman Filter, IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5666–5674, Jul. 2017.
https://doi.org/10.1109/tpel.2016.2606417

M. H. Rashid, Power electronics handbook : devices, circuits, and applications. Butterworth-Heinemann, 2011.

A. El Aroudi, F. Angulo, G. Olivar, B. G. M. Robert, and M. Feki, “Stabilizing a Two-cell DC-DC Buck Converter by Fixed Point Induced Control,” Int. J. Bifurc. Chaos, vol. 19, no. 06, pp. 2043–2057, Jun. 2009.
https://doi.org/10.1142/s0218127409023895

A. El Aroudi, D. Giaouris, H. H.-C. Iu, and I. A. Hiskens, A Review on Stability Analysis Methods for Switching Mode Power Converters, IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 5, no. 3, pp. 302–315, Sep. 2015.
https://doi.org/10.1109/jetcas.2015.2462013

A. El Aroudi and M. Orabi, Stabilizing Technique for AC–DC Boost PFC Converter Based on Time Delay Feedback, IEEE Trans. Circuits Syst. II Express Briefs, vol. 57, no. 1, pp. 56–60, Jan. 2010.
https://doi.org/10.1109/tcsii.2009.2036546

F. E. Hoyos Velasco, N. Toro-García, and Y. A. Garcés Gómez, Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies, Int. J. Bifurc. Chaos, vol. 25, no. 04, p. 1550049, Apr. 2015.
https://doi.org/10.1142/s0218127415500492

F. E. Hoyos, D. Burbano, F. Angulo, G. Olivar, N. Toro, and J. A. Taborda, Effects of Quantization, Delay and Internal Resistances in Digitally ZAD-Controlled Buck Converter, Int. J. Bifurc. Chaos, vol. 22, no. 10, p. 1250245, Oct. 2012.
https://doi.org/10.1142/s0218127412502458

J. A. Taborda, F. Angulo, and G. Olivar, Estimation of parameters in Buck converter with Digital-PWM control based on ZAD strategy, in 2011 IEEE Second Latin American Symposium on Circuits and Systems (LASCAS), 2011, pp. 1–4.
https://doi.org/10.1109/lascas.2011.5750302

E. Fossas, R. Griño, and D. Biel, Quasi-Sliding control based on pulse width modulation, zero averaged dynamics and the L2 norm, in Advances in Variable Structure Systems - 6th IEEE International Workshop on Variable Structure Systems, 2000, pp. 335–344.
https://doi.org/10.1142/9789812792082_0031

J. A. Taborda, F. Angulo, and G. Olivar, Characterization of chaotic attractors inside band-merging scenario in a ZAD-controlled buck converter, Int. J. Bifurc. Chaos, vol. 22, no. 10, p. 1230034, Oct. 2012.
https://doi.org/10.1142/s0218127412300340

D. Biel, R. Cardoner, and E. Fossas, Tracking Signal in a Centered Pulse ZAD Power Inverter, in International Workshop on Variable Structure Systems, 2006, pp. 104–109.
https://doi.org/10.1109/vss.2006.1644501

F. E. Hoyos, J. E. Candelo-Becerra, and C. I. Hoyos Velasco, Application of Zero Average Dynamics and Fixed Point Induction Control Techniques to Control the Speed of a DC Motor with a Buck Converter, Appl. Sci., vol. 10, no. 5, p. 1807, Mar. 2020.
https://doi.org/10.3390/app10051807

F. Hoyos Velasco, J. Candelo-Becerra, and A. Rincón Santamaría, Dynamic Analysis of a Permanent Magnet DC Motor Using a Buck Converter Controlled by ZAD-FPIC, Energies, vol. 11, no. 12, p. 3388, Dec. 2018.
https://doi.org/10.3390/en11123388

F. E. Hoyos, J. E. Candelo, and J. A. Taborda, Selection and validation of mathematical models of power converters using rapid modeling and control prototyping methods, Int. J. Electr. Comput. Eng., vol. 8, no. 3, p. 1551, Jun. 2018.
https://doi.org/10.11591/ijece.v8i3.pp1551-1568

Hoyos, Candelo-Becerra, and Hoyos Velasco, Model-Based Quasi-Sliding Mode Control with Loss Estimation Applied to DC–DC Power Converters, Electronics, vol. 8, no. 10, p. 1086, Sep. 2019.
https://doi.org/10.3390/electronics8101086

M. S. Irfan, A. Ahmed, J.-H. Park, and C. Seo, Current-Sensorless Power-Decoupling Phase-Shift Dual-Half-Bridge Converter for DC–AC Power Conversion Systems Without Electrolytic Capacitor, IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3610–3622, May 2017.
https://doi.org/10.1109/tpel.2016.2587813

J. E. C.-B. Fredy E. Hoyos, Carlos I. Hoyos, DC-AC power inverter controlled analogically with zero hysteresis, Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 4767–4776, 2019.
https://doi.org/10.11591/ijece.v9i6.pp4767-4776

F. E. Hoyos Velasco, J. E. Candelo, and J. I. Silva Ortega, Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC, INGE CUC, vol. 14, no. 1, pp. 9–18, Jan. 2018.
https://doi.org/10.17981/ingecuc.14.1.2018.01

F. Hoyos, F. Angulo, J. Taborda, and G. Olivar Tost, Implementation of a New Digital Control Technique for DC-DC AND DC-AC Power Converters, DYNA, vol. 77, no. 164, pp. 189–199, Oct. 2010.

S. Ashita, G. Uma, and P. Deivasundari, Chaotic dynamics of a zero average dynamics controlled DC–DC Ćuk converter, IET Power Electron., vol. 7, no. 2, pp. 289–298, Feb. 2014.
https://doi.org/10.1049/iet-pel.2012.0737

J. A. Taborda, S. Santini, M. di Bernardo, and F. Angulo, Active Chaos Control of a Cam-Follower Impacting System using FPIC Technique IFAC Proc. Vol., vol. 42, no. 7, pp. 327–332, 2009.
https://doi.org/10.3182/20090622-3-uk-3004.00061

F. Angulo, G. Olivar, J. Taborda, and F. Hoyos, Nonsmooth dynamics and FPIC chaos control in a DC-DC ZAD-strategy power converter, in ENOC, 2008, pp. 1–6.

Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132.
https://doi.org/10.15866/iree.v14i2.16331

Di Noia, L., Del Pizzo, A., Meo, S., Reduced-Order Averaged Model and Non-Linear Control of a Dual Active Bridge DC-DC Converter for Aerospace Applications, (2017) International Review of Aerospace Engineering (IREASE), 10 (5), pp. 259-266.
https://doi.org/10.15866/irease.v10i5.13818

Ouadi, H., Et-taoussi, M., Bouhlal, A., Nonlinear Control of Multilevel Inverter for Grid Connected Photovoltaic System with Power Quality Improvement, (2017) International Review of Electrical Engineering (IREE), 12 (1), pp. 43-59.
https://doi.org/10.15866/iree.v12i1.10685

Laagoubi, T., Benchagra, M., Bouzi, M., Photovoltaic System for Three Phase Load with Nonlinear Controllers, (2017) International Review on Modelling and Simulations (IREMOS), 10 (1), pp. 70-76.
https://doi.org/10.15866/iremos.v10i1.11420


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize