Open Access Open Access  Restricted Access Subscription or Fee Access

Grasping Recognition Based on Electromyographic Signals Using a Wearable Device

Astrid Rubiano(1*), Jose Luis Ramirez(2)

(1) Nueva Granada Military University, Colombia
(2) Nueva Granada Military University, Colombia
(*) Corresponding author


DOI: https://doi.org/10.15866/ireaco.v12i2.16267

Abstract


Human grasping recognition based on superficial electromyographic signals is a research field that has grown in recent years due to the fact that it is possible to control i.) prosthesis hand, and ii.) general device. Recently, there is an innovative technology called wearable device; an example is MyoarmbandTM, which is able to capture superficial electromyographic signals. Using this device, a new mathematical model that allows automatic grasping movements detection, in real-time recognition, has been introduced. The model involves three steps: i.) identifying movement inception, ii.) extracting features from superficial electromyographic signals, and iii.) recognizing patterns. In order to evaluate hand grasping recognition accuracy, an experimental procedure is presented, using MyoarmbandTM bracelet. Moreover, a potential application of the presented model focuses on the control of the ProMain soft robotic hand prosthesis.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Automatic Control; Electromyographic Signals; Myoarmband; Prosthesis Control; SVM; Wearable Device

Full Text:

PDF


References


J. Chu, I. Moon, Y. Lee, S. Kim and M. Mun, 2007 IEEE/ASME Transactions on Mechatronics, Vol 12, 282-290.

doi:10.1109/TMECH.2007.897262

A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard and Y. Laurillau, 2014, Computer methods and programs in biomedicine 117, 247-256.
https://doi.org/10.1016/j.cmpb.2014.06.013

A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard and Y. Laurillau, 2013, Expert Systems with Applications 40, pp 4832-4840.
https://doi.org/10.1016/j.eswa.2013.02.023

P. Kaufmann, K. Englehart and M. Platzner, 2010 Fluctuating emg signals: Investigating Llongterm Effects of Pattern Matching Algorithms, 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE) pp 6357-6360.
https://doi.org/10.1109/iembs.2010.5627288

M. Yoshikawa, M. Mikawa and K. Tanaka, 2007, A myoelectric Interface for Robotic Hand Control Using Support Vector Machine, Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (San Diego, USA) pp 2723-2728 ISSN 2153-0858.
https://doi.org/10.1109/iros.2007.4399301

M. Yoshikawa, Y. Taguchi, N. Kawashima, Y. Matsumoto and T. Ogasawara, 2012, Hand Motion Recognition Using Hybrid Sensors Consisting of EMG Sensors and Optical Distance Sensors, Proceedings 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication (Paris, France) pp 144-149 ISSN 1944-9445.
https://doi.org/10.1109/roman.2012.6343745

D. Yang, J. Zhao, Y. Gu, L. Jiang and H. Liu, 2009, Emg Pattern Recognition and Grasping Force Estimation: Improvement to the Myocontrol of Multi-dof Prosthetic Hands, Proceeding of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (St. Louis, USA) pp 516-521 ISSN 2153-0858.
https://doi.org/10.1109/iros.2009.5354544

H. Kawasaki, M. Kayukawa, H. Sakaeda and T. Mouri, 2014 Learning System for Myoelectric Prosthetic Hand Control by Forearm Amputees. The 23rd IEEE International Symposium on Robot and Human Interactive Communication pp 899-904 ISSN 1944-9445.
https://doi.org/10.1109/roman.2014.6926367

M. Tavakolan, Z.G. Xiao, J. Webb and C. Menon, 2012, Emg processing for classification of hand gestures and regression of wrist torque, Proceedings of 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Roma, Italy) pp 1770-1775 ISSN 2155-1774.
https://doi.org/10.1109/biorob.2012.6290677

C. Castellini, E. Gruppioni, A. Davalli and G. Sandini, 2009 Journal of Physiology - Paris 103 255-262.
https://doi.org/10.1016/j.jphysparis.2009.08.008

E. C. Orosco, N.M. Lopez and F. di Sciascio, 2013, Biomedical Signal Processing and Control 8 153-168.

Kang Soo Kim, Heung Ho Choi, Chang Soo Moon, Chi Woong Mun, Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions, Current Applied Physics, Volume 11, Issue 3, 2011, Pages 740-745, ISSN 1567-1739.
https://doi.org/10.1016/j.cap.2010.11.051

N. Wang, Y. Chen and X. Zhang, 2013, Biomedical Signal Processing and Control 8 706-712 ISSN 1746-8094.

Labs T, 2016, Gesture control armband. URL: https://www.myo.com/

Z. Arief, I.A. Sulistijono and R.A. Ardiansyah, 2015, Comparison of five time series EMG features extractions using Myo Armband, 2015 International Electronics Symposium (IES) pp 11-14.
https://doi.org/10.1109/elecsym.2015.7380805

G. C. Luh, H. A. Lin, Y. H. Ma and C. J. Yen, 2015 Intuitive muscle-gesture based robot navigation control using wearable gesture armband, 2015 International Conference on Machine Learning and Cybernetics (ICMLC) vol 1 pp 389-395.
https://doi.org/10.1109/icmlc.2015.7340953

G. Pomboza-Junez and A. J. Holgado-Terriza , 2015, Control of home devices based on hand gestures, 2015 IEEE 5th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), pp 510-514.
https://doi.org/10.1109/icce-berlin.2015.7391325

A. Rubiano, J. L. Ramirez, M.N. El Korso, N. Jouandeau, L. Gallimard and O. Polit, 2015, Elbow flexion and extension identification using surface electromyography signals, Proceedings of 23th European Signal Processing Conference (EUSIPCO) (Nice) pp 644-648.
https://doi.org/10.1109/eusipco.2015.7362462

A. Rubiano, J. L. Ramirez, M.N. El Korso, N. Jouandeau, L. Gallimard and O. Polit, 2015, Features selection and classification to estimate elbow movements, Journal of Physics: Conference Series 657, ISSN: 1742-6596, pp 1-6.
https://doi.org/10.1088/1742-6596/657/1/012012

J. L. Ramirez, A. Rubiano, N. Jouandeau, L. Gallimard and O. Polit, 2016, New Trends in Medical and Service Robots, (ISSN: 978-3-319-30673-5, vol 39, Nantes, FR: Springer, chap Morphological optimization of prosthesis’ finger for precision grasping, pp 1-15).
https://doi.org/10.1007/978-3-319-30674-2_19

J. Ramirez, A. Rubiano, N. Jouandeau, L. Gallimard and O. Polit, Smart Structures and Materials, (Springer, chap Artificial muscles design methodology applied to robotic fingers, pp 1-17, 2015).
https://doi.org/10.1007/978-3-319-44507-6_11

T. Feix, Anthropomorphic Hand Optimization based on a Latent Space Analysis, Ph.D. thesis dissertation, Vienna University of Technology URL http://me.xief.net/publications /thesis.pdf, 2011.

A. Rubiano, Smart control of a soft robotic hand prosthesis, Ph.D. thesis dissertation, Doctoral School: Science for engineering, Paris Nanterre University, 2016.

T. M. Cover, and J.A. Thomas, 2006, Elements of information theory, (2nd Ed, ISBN: 13 978-0-471-24195-9, John Wiley & Sons, 2011).

Niola, V., Rossi, C., Savino, S., Dynamical Model and Prototype Tests of a Self-Adaptive Mechanical Hand, (2016) International Review on Modelling and Simulations (IREMOS), 9 (2), pp. 97-104.
https://doi.org/10.15866/iremos.v9i2.8068

Pinzon Arenas, J., Jimenez Moreno, R., Hernandez Beleño, R., EMG Signal Acquisition and Processing Application with CNN Testing for MATLAB, (2018) International Review of Automatic Control (IREACO), 11 (1), pp. 44-51.
https://doi.org/10.15866/ireaco.v11i1.13379

Djelaila, S., Berrached, N., Boudraa, A., Taleb Ahmed, A., Chalabi, Z., Mode by Mode Classification of Congestive Heart Failure from Long Term HRV Analysis, (2016) International Review of Electrical Engineering (IREE), 11 (6), pp. 663-672.
https://doi.org/10.15866/iree.v11i6.10332

Marrugo Cardenas, N., Amaya Hurtado, D., Ramos Sandoval, O., Comparison of Multi-Class Methods of Features Extraction and Classification to Recognize EEGs Related with the Imagination of Two Vowels, (2018) International Journal on Communications Antenna and Propagation (IRECAP), 8 (5), pp. 398-405.
https://doi.org/10.15866/irecap.v8i5.12709

Hendel, M., Benyettou, A., Hendel, F., Fusion of Direct Probabilistic Multi-Class Support Vector Machines to Enhance Mental Tasks Recognition Performance in BCI Systems, (2018) International Journal on Communications Antenna and Propagation (IRECAP), 8 (5), pp. 430-438.
https://doi.org/10.15866/irecap.v8i5.14068


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize