Open Access Open Access  Restricted Access Subscription or Fee Access

Adaptive Input-Output Feedback Linearization Control of Doubly-Fed Induction Machine in Wind Power Generation


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v12i1.15619

Abstract


The present paper aims to present an adaptive, nonlinear control of wind energy conversion system using doubly fed induction generator (DFIG). The aim is to track the optimal torque-speed characteristic of the wind turbine in order to extract the maximum power, as well as to control the reactive power transmitted to the electrical grid. The adaptive nonlinear controller is designed on the basis of input-output feedback linearization control (FLC) with the full order model of the DFIG in the fixed stator d, q axis reference frame. In order to ensure the system stability under uncertain parameters such as rotor and stator windings resistances and the aerodynamic torque which comes to compromise the robustness and the efficiency of the controller, update laws in real time of the uncertain parameters are established. The global stability of the system is proven using Lyapunov's stability theory. Simulation results have been carried out in Matlab/Simulink in presence of uncertain parameters also, the comparison between the control with and without adaptation confirm the validity and robustness of proposed controller.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Control Wind Power Generation; Doubly-Fed Induction Generator; Input-Output Feedback Linearization; Unknown Aerodynamic Torque; Unknown Rotor Winding Resistance; Unknown Stator Winding Resistance; Adaptive Control; Lyapunov Theory

Full Text:

PDF


References


Boroumandjazi G, Rismanchi B, Saidur R, Technical characteristic analysis of wind energy conversion systems for sustainable development, Energy Convers Manag, Vol 69:87-94, 2013.
https://doi.org/10.1016/j.enconman.2013.01.030

Jadhav H. T., Roy R. Electrical Power and Energy Systems A comprehensive review on the grid integration of doubly fed induction generator. Int J Electr Power Energy Syst, Vol 49: 8-18, 2013.
https://doi.org/10.1016/j.ijepes.2012.11.020

Yang L, Xu Z, Østergaard J, Member S, Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through, IEEE Trans Power Syst, Vol 27(Issue 2): 713-722, 2012.
https://doi.org/10.1109/tpwrs.2011.2174387

Abdi E, Barati F, McMahon R, Stator-Flux-Oriented Vector Control for Brushless Doubly Fed Induction Generator, IEEE Trans Ind Electron, Vol 56(Issue 10):4220-4228, 2009.
https://doi.org/10.1109/tie.2009.2024660

Tremblay E, Atayde S, Chandra A, Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: A DSP-based implementation approach, IEEE Trans Sustain Energy, Vol 2(Issue 3): 288-299, 2011.
https://doi.org/10.1109/tste.2011.2113381

Krishnamurthy P, Khorrami F, Jiang Z. P., Global Output Feedback Tracking for Nonlinear Systems in Generalized Output-Feedback Canonical Form. IEEE Trans, Autom. Control, Vol 47(Issue 5):814-819, 2002.
https://doi.org/10.1109/tac.2002.1000279

Ademi S, Jovanović M. G., Vector Control Methods for Brushless Doubly Fed Reluctance Machines, IEEE Trans Ind Electron.Vol 62(Issue 1):96-104, 2015.
https://doi.org/10.1109/tie.2014.2327564

Mishra, Mishra S., Member S., Li F., Dong Z. Y., Bansal R. C., Small Signal Stability Analysis of a DFIG-Based Wind Power System Under Different Modes of Operation, Conf Proc - IEEE Appl Power Electron Conf Expo - APEC, Vol. 24, pp 972-982, 2009.
https://doi.org/10.1109/tec.2009.2031498

Yang L., Xu Z., Østergaard J., Dong Z. Y., Wong K. P., MaX, Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system, IEEE Trans Energy Convers, Vol 26(Issue 1):328-339, 2011.
https://doi.org/10.1109/tec.2010.2091130

Boukhezzar B., Siguerdidjane H., Hand M. M., Nonlinear Control of Variable-Speed Wind Turbines for Generator Torque Limiting and Power Optimization, J Sol Energy Eng, Vol 128(Issue 4):516, 2006.
https://doi.org/10.1115/1.2356496

Khedher A., Khemiri N., Mimouni M. F., Wind Energy Conversion System Using DFIG Controlled by Backstepping and Sliding Mode Strategies, Int J Renew Energy Res Vol 2(Issue 3):421-430, 2012.

Huang C., Member S., Li F., Member S. Second- Order Cone Programming-Based Optimal Control Strategy for Wind Energy Conversion Systems Over Complete Operating Regions, IEEE Trans Sustain Energy, Vol 6(Issue1):263–271, 2015.
https://doi.org/10.1109/tste.2014.2368141

Chen G., Zhang L., Cai X., Optimized Control of the Doubly Fed Induction Generator System Based on Input-Output Linearizing Scheme,Wind Eng, Vol 38(Issue 1):101-108, 2014.
https://doi.org/10.1260/0309-524x.38.1.101

Yang B., Jiang L., Wang L., Yao W., Wu Q. H., Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine, Int J Electr Power Energy Syst, Vol 74:429-436, 2016.
https://doi.org/10.1016/j.ijepes.2015.07.036

Toliyat H. A., Levi E., Raina M., A review of RFO induction motor parameter estimation techniques, IEEE Trans Energy Convers, Vol 18 (Issue 2):271-283, 2003.
https://doi.org/10.1109/tec.2003.811719

Mauricio J. M., Leon A. E., Gomez-Exposito A., Solsona J. A. An Adaptive Nonlinear Controller for DFIM-Based Wind Energy Conversion Systems. IEEE Trans Energy Convers, Vol 23(Issue 4):1025–1035, 2008.
https://doi.org/10.1109/tec.2008.2001441

Susperregui A., Lizarraga I., Jugo J., Tapia G., Automated control of doubly fed induction generator integrating sensorless parameter estimation and grid synchronisation, IET Renew Power Gener, Vol 8(Issue 1):76-89, 2014.
https://doi.org/10.1049/iet-rpg.2013.0045

López-García, Beltran-Carbajal F, Espinosa-Pérez G, Escarela-Perez R, Passivity-based power control of a doubly fed induction generator with unknown parameters, Int Trans Electr Energy Syst, Vol 26(Issue 11): 2402-2424, 2016.
https://doi.org/10.1002/etep.2213

Rigatos G., Siano P., Zervos N., Cecati C., Control and Disturbances Compensation for Doubly Fed Induction Generators Using the Derivative-Free Nonlinear Kalman Filter, IEEE Trans Power Electron, Vol 30(Issue 10):5532-5547, 2015.
https://doi.org/10.1109/tpel.2014.2369412

Pinar Pérez J. M., García Márquez F. P., Tobias A., Papaelias M., Wind turbine reliability analysis. Rene, Sustain Energy Rev, Vol 23:463-472, 2013.
https://doi.org/10.1016/j.rser.2013.03.018

Jin X., Ju W., Zhang Z., Guo L., Yang X., System safety analysis of large wind turbines, Renew Sustain Energy Rev, Vol 56:1293-1307, 2016.
https://doi.org/10.1016/j.rser.2015.12.016

Njiri J. G., Söffker D., State-of-the-art in wind turbine control: Trends and challenges, Renew Sustain Energy Rev, Vol 60: 377-393, 2016.
https://doi.org/10.1016/j.rser.2016.01.110

Liu F., Li D., Li P., Song Y., Quadratic Optimal Tracking Control of Wind Turbine Systems, IFAC-Papers OnLine, Vol 48(Issue 28):502-507.
https://doi.org/10.1016/j.ifacol.2015.12.178

Heier S., Grid Integration Of Wind Energy Grid Integration Of Wind Energy Onshore And Offshore (John Wiley & Sons, 2014).
https://doi.org/10.1002/9781118703274

Krause P.,Wasynczuk O., Sudhoff S. D., Pekarek S. Analysis of electric machinery and drive systems (John Wiley & Sons, 2013).
https://doi.org/10.1002/9781118524336

Rachidi M., Idrissi B. B. Adaptive Backstepping Control for Wind Turbines with Doubly-Fed Induction Generator Under Unknown Parameters, Journal of Theoretical & Applied Information Technology, Vol 91(Issue 1):158-167, 2016.

Sastry S. Nonlinear Systems: Analysis, Stability, and Control (Springer Science & Business Media, 2013).

Ouyang J., Xiong X., Dynamic behavior of the excitation circuit of a doubly-fed induction generator under a symmetrical voltage drop, Renewable Energy, Vol 71: 629–638, 2014.
https://doi.org/10.1016/j.renene.2014.06.029

Marino R., Tomei P., Verrelli C. M. Induction Motor Control Design (Springer Science & Busines Media, 2010).

Spooner J. T., Maggiore M., Ordonez R, Passino K. M. Frontmatter and Index (John Wiley & Sons, Inc, 2002).

Bakouri, A., Mahmoudi, H., Abbou, A., Modeling and Robust Control with Wind Speed Estimation by Artificial Neural Networks of a DFIG Wind Turbine Under Both Normal Operation and Grid Fault, (2017) International Review of Electrical Engineering (IREE), 12 (2), pp. 100-109.
https://doi.org/10.15866/iree.v12i2.11343

Chakib, R., Essadki, A., Cherkaoui, M., Participation of DFIG Wind Turbine Controlled by Active Disturbance Rejection Control in Primary Frequency Control, (2016) International Review of Electrical Engineering (IREE), 11 (2), pp. 183-192.
https://doi.org/10.15866/iree.v11i2.8150

Setiawan, I., Facta, M., Priyadi, A., Purnomo, M., Analysis and Comparison of Control Strategies for a DFIG-Small Wind Turbine System with High Fluctuating Wind Speed Conditions, (2017) International Review of Electrical Engineering (IREE), 12 (2), pp. 110-120.
https://doi.org/10.15866/iree.v12i2.11387

Farhat, S., Alaoui, R., Kahaji, A., Bouhouch, L., Wind Turbine MPPT Strategy with DFIG Vector Control, (2018) International Review on Modelling and Simulations (IREMOS), 11 (6), pp. 406-413.
https://doi.org/10.15866/iremos.v11i6.16156

Wongdet, P., Leeton, U., Marungsri, B., Line Loss Reduction by Optimal Location of Battery Energy Storage System for the Daily Operation in Microgrid with Distributed Generations, (2018) International Journal on Energy Conversion (IRECON), 6 (3), pp. 83-89.
https://doi.org/10.15866/irecon.v6i3.15095

Hadjou, F., Tabbache, B., Berkouk, E., Noui, S., Benbouzid, M., Experimental Investigation of Wind Turbine Emulator for PMSM-Based Energy Conversion Systems, (2018) International Journal on Energy Conversion (IRECON), 6 (5), pp. 144-152.
https://doi.org/10.15866/irecon.v6i5.16276

Mohanty, K., Fuzzy Control of Wind Cage Induction Generator System, (2017) International Journal on Energy Conversion (IRECON), 5 (4), pp. 122-129.
https://doi.org/10.15866/irecon.v5i4.13755


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize