Open Access Open Access  Restricted Access Subscription or Fee Access

Design and FPGA Implementation of a New Intelligent Behaviors Fusion for Mobile Robot Using Fuzzy Logic


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v12i1.14802

Abstract


A new intelligent method of behaviors fusion for mobile robot applications is implemented. The developed fuzzy architecture control can activate multiple behaviors at the same time. The degree of activation (DA) of each behavior is handled intelligently to ensure the autonomous navigation of a mobile robot in a dynamic and uncertain environment. An odometric system adapted with all unicycle platforms is elaborated too, allowing the determination of the position and orientation in real time of the robot. The whole architecture is tested and implemented via an FPGA using the VHDL hardware programming language. The calculations are done in fixed point to save the consumption of FPGA blocks, and to keep the accuracy to perform all tasks during navigation. Waveform and experimental results indicate the relevance and rapidity of the system, and show the possibility to embark it in different robotic platform such as two-wheeled wheelchairs, and within various navigation environments.
Copyright © 2019 Praise Worthy Prize - All rights reserved.

Keywords


Behaviors Fusion; Fixed Point; FPGA Implementation; Fuzzy Logic; Sensors Fusion; Unicycle Robot; VHDL Code

Full Text:

PDF


References


J. Cerkala and A. Jadlovska, Application of neural models as controllers in mobile robot velocity control loop, Journal of Electrical Engineering, 68(1) : 39-46, 2017.
https://doi.org/10.1515/jee-2017-0005

C. Pozna, R. E. Precup and P. Földesi, A novel pose estimation algorithm for robotic navigation. Robotics and Autonomous Systems, 63, 10-21, 2015.
https://doi.org/10.1016/j.robot.2014.09.034

C. Pozna and R. E. Precup, On a translated frame-based approach to geometric modeling of robots. Robotics and Autonomous Systems, 91, 49-58, 2017.
https://doi.org/10.1016/j.robot.2017.01.004

M. Mjahed, Search for the Higgs boson at LHC by using Genetic Algorithms. Nucl. Instrum. Methods Phys. Res. Sect. A, 559(1), 172-176, 2006.

https://doi.org/10.1016/j.nima.2005.11.137

Z. Mohamed, M. Kitani, S. I. Kaneko and G. Capi, Humanoid robot arm performance optimization using multi objective evolutionary algorithm. Int. J. Control Autom. Syst, 12(4), 870-877, 2014.
https://doi.org/10.1007/s12555-013-0275-6

U. Markowska-Kaczmar and M. Koldowski, Spiking neural network vs multilayer perceptron: who is the winner in the racing car computer game. Soft Computing, 19(12), 3465-3478, 2015.
https://doi.org/10.1007/s00500-014-1515-2

B. Dexu, S. Wei, Y. Hongshan, W. Cong and Z. Hui, Adaptive robust control based on RBF neural networks for duct cleaning robot. Int. J. Control Autom. Syst, 13(2), 475-487, 2015.
https://doi.org/10.1007/s12555-012-0447-9

T. Dierks, B. Brenner and S. Jagannathan, Neural network-based optimal control of mobile robot formations with reduced information exchange. IEEE Trans. Control Syst. Technol, 21(4), 1407-1415, 2013.
https://doi.org/10.1109/tcst.2012.2200484

L. Amador-Angulo, O. Mendoza, J. R. Castro, A. Rodríguez-Díaz, P. Melin and O. Castillo, Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot. Sensors, 16(9), 1458, 2016.
https://doi.org/10.3390/s16091458

D. H. Zhai and Y. Xia, Adaptive fuzzy control of multilateral asymmetric teleoperation for coordinated multiple mobile manipulators. IEEE Trans. Fuzzy Syst, 24(1), 57-70, 2016.
https://doi.org/10.1109/tfuzz.2015.2426215

J. X. Xu, Z. Q. Guo and T. H. Lee, Design and implementation of a Takagi–Sugeno-type fuzzy logic controller on a two-wheeled mobile robot. IEEE Trans. Ind. Electron, 60(12), 5717-5728, 2013.
https://doi.org/10.1109/tie.2012.2230600

X. Yang, M. Moallem and R. V. Patel, A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation. IEEE Trans. Syst. Man Cybern. Part B Cybern, 35(6), 1214-1224, 2005.
https://doi.org/10.1109/tsmcb.2005.850177

M. Almasri, K. Elleithy and A. Alajlan, Sensor Fusion Based Model for Collision Free Mobile Robot Navigation. Sensors, 16(1), 24. 2015.
https://doi.org/10.3390/s16010024

F. Abdessemed, K. Benmahammed and E. Monacelli, A fuzzy-based reactive controller for a non-holonomic mobile robot. Rob. Auton. Syst, 47(1), 31-46, 2004.
https://doi.org/10.1016/j.robot.2004.02.006

M. Nam, M. U. Ahmed, Y. Shen and P. K. Rhee, Mouth tracking for hands-free robot control systems. Int. J. Control Autom. Syst, 12(3), 628-636, 2014.
https://doi.org/10.1007/s12555-012-0473-7

T. Das, I. N. Kar, Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol, 14(3), 501-510, 2006.
https://doi.org/10.1109/tcst.2006.872536

I. Ullah, F. Ullah, Q. Ullah and S. Shin, Integrated tracking and accident avoidance system for mobile robots. Int. J. Control Autom. Syst, 11(6), 1253-1265, 2013.
https://doi.org/10.1007/s12555-012-0057-6

J. M. Bengochea-Guevara, J. Conesa-Muñoz, D. Andújar and A. Ribeiro, Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot, Sensors, 16(3), 276, 2016.
https://doi.org/10.3390/s16030276

A. Al-Marakeby, F. Kimura, M. Zaki and A. Rashid, Design of an embedded arabic optical character recognition. J. Sig. Proc. Sys, 70(3), 249-258, 2013.
https://doi.org/10.1007/s11265-012-0662-x

A. Suyyagh and G. Abandah, FPGA parallel recognition engine for handwritten Arabic words. J. Sig. Proc. Sys, 78(2), 163-170, 2013.
https://doi.org/10.1007/s11265-013-0848-x

M. Mysorewala and L. Cheded, A project-based strategy for teaching robotics using NI's embedded-FPGA platform. Int. J. Electr. Eng. Educ, 50(2), 139-156, 2013.
https://doi.org/10.7227/ijeee.50.2.4

Z. Du, W. Wang, Z. Yan, W. Dong and W. Wang, Variable Admittance Control Based on Fuzzy Reinforcement Learning for Minimally Invasive Surgery Manipulator. Sensors, 17(4), 844, 2017.
https://doi.org/10.3390/s17040844

D. Zhang and H. Li, A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms. IEEE Trans. Ind. Electron, 55(2), 551-561, 2008.
https://doi.org/10.1109/tie.2007.911946

C. Liu, Y. Sun and L. Christopher, 3D EM/MPM Image Segmentation Using an FPGA Embedded Design Implementation. J. Sig. Proc. Sys, 81(3), 411-424, 2015.
https://doi.org/10.1007/s11265-014-0965-1

S. Shreejith and S. A. Fahmy, Extensible FlexRay communication controller for FPGA-based automotive systems. IEEE Trans. Veh. Technol, 64(2), 453-465, 2015.
https://doi.org/10.1109/tvt.2014.2324532

Elkari, B., Ayad, H., El Kari, A., Mjahed, M., VLSI Implementation of an Adaptable Localization System for All Unicycle Robot Platforms, (2017) International Review on Modelling and Simulations (IREMOS), 10 (1), pp. 8-15.
https://doi.org/10.15866/iremos.v10i1.11288

Elkari, B., Ayad, H., El Kari, A., Mjahed, M., A New Approach of Fusion Behavior-Based Fuzzy Control for Mobile Robot Navigation, (2017) International Review of Automatic Control (IREACO), 10 (1), pp. 13-22.
https://doi.org/10.15866/ireaco.v10i1.10390

Compala Lakshmiah, K., Raghavendiran, T., A New Modified H-Bridge Multilevel Inverter with Multi Carrier PWM Technique for Speed Control of Induction Motor, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 365-372.
https://doi.org/10.15866/iree.v13i5.15501

Sudheer, H., Kodad, S., Sarvesh, B., Improvements in SVM-DTC of Induction Motor with Fuzzy Logic Controllers Using FPGA, (2017) International Review of Electrical Engineering (IREE), 12 (5), pp. 440-449.
https://doi.org/10.15866/iree.v12i5.12857


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize