Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of Kaiser Window Shape Parameter for the Enhancement of Rotor Faults Diagnosis

(*) Corresponding author

Authors' affiliations



To show the reliability of new methods developed for the induction motors rotor faults diagnosis, a comparison is often made with the classical method based on the estimation of the Power Spectral Density by Periodogram (PSDP). The authors of the new methods always criticize the PSDP method for its drawbacks related to the smoothing and side effects of the selected window function. This paper aims at showing that the PSDP based on the Kaiser window associated with an adequate calculation of the shape parameter can overcome these drawbacks. This calculation which takes into account the characteristics of the stator current spectrum, will improve the detection of the faults while retaining the main advantage of the method, namely a fast calculation time. The experimental results obtained show the positive contribution of the proposed approach on the reliability of the diagnosis of the incipient faults.
Copyright © 2017 Praise Worthy Prize - All rights reserved.


Induction Motor; Diagnostic; Rotor Fault; Spectral Analysis; Window Function; Kaiser

Full Text:



A. H. Bonnett, C. Yung, Increased efficiency versus increased reliability, IEEE Ind. Appl. Mag., Vol. 14 (Issue 1): 29-36, 2008.

J. A. Antonino-Daviu, J. Pons-Llinares, S. B. Lee, Advanced Rotor Fault Diagnosis for Medium-Voltage Induction Motors Via Continuous Transforms, IEEE Transactions on Industry Applications, Vol. 52 (Issue 5): 4503-4509, 2016.

J. Antonio-Daviu, S. Avieyente, E. G. Strangas, M. Riera-Guasp, Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors, IEEE Trans. Ind. Informatics, Vol. 9(Issue 1): 100-108, 2013.

B. Zhang, et al., A probabilistic fault detection approach: Application to bearing fault detection, IEEE Trans. Ind. Electron., Vol. 58 (Issue 5): 2011-2018, 2011.

S. B. Lee et al., Identification of False Rotor Fault Indications Produced by Online MCSA for Medium-Voltage Induction Machines, IEEE Transactions on Industry Applications, 2016, Vol. 52 (Issue 1): 729-739.

M. Sahraoui, S. E. Zouzou, A. Ghoggal, S. Guedidi, H. Derghal, An Improved Algorithm for Detection of Rotor Faults in Squirrel Cage Induction Motors Based on a New Fault Indicator, XXth International Conference on Electrical Machines (ICEM), pp. 1572-1578, Marseille, France, 2-5 Sept. 2012.

P. Purkait, G. Das, D. Mukherjee, S. Das, Influence of Rotor Faults on Induction Motor Stator Current Concordia Patterns, 1st International Conference on Power and Energy in NERIST (ICPEN), pp. 1-6, Nirjuli, 28-29 Dec 2012.

Y. H. Kim, Y. W. Youn, D. H. Hwang, J. H. Sun, D. S. Kang, High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors, IEEE Trans. Ind. Electronics., Vol. 60 (Issue 9): 4103-4117, 2013.

B. Xu, L. Sun, L. Xu, G. Xu, Improvement of the Hilbert Method via ESPRIT for Detecting Rotor Fault in Induction Motors at Low Slip, IEEE Trans. Energy Conversion, Vol. 28 (Issue1): 225-233, 2013.

A. H. Boudinar, N. Benouzza, A. Bendiabdellah, M. E. AKhodja, Induction Motor Bearing Fault Analysis Using a Root-MUSIC Method, in IEEE Transactions on Industry Applications, Vol. 52, (Issue 5): 3851-3860, 2016.

A. Bendiabdellah, A. H. Boudinar, N. Benouzza, M. Khodja, The enhancements of broken bar fault detection in induction motors. In Proc. of Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side, Turkey, 02-04 Sep. 2015.

B. Ayhan, M. Y. Chow, H. J. Trussell, M. H. Song, A case study on the comparison of non-parametric spectrum methods for broken rotor bar fault detection, The 29th Annual Conference of the IEEE, IECON'03,Vol. 3, pp.2835-2840, 2-6 November 2003.

A. Bendiabdellah, N. Benouzza, D. Toumi, Cage motor faults detection by speed estimation and spectral current analysis, 3rd IET International Conference on Power electronics, Machines and Drives (PEMD 2006), pp. 47-51, Dublin, Ireland, 4-6 April 2006.

H. Henao, G. A. Capolino, M. Fernandez-Cabanas, F. Filippetti, C. Bruzzese, E. Strangas, R. Pucsa, M. Riera-Guasp, S. HedayatiKia, Trends in Fault Diagnosis for Electrical Machines: A review of Diagnostic Techniques, IEEE Industrial Electronics Magazine, Vol. 8(Issue2): 31-42, 2014.

F. Filippetti, A. Bellini, G. A. Capolino, Condition monitoring and diagnosis of rotor faults in induction machines: State of art and future perspectives, Electrical Machines Design Control and Diagnosis (WEMDCD), 2013 IEEE Workshop on, pp. 196-209, Paris, 2013.

M. Sahraoui, A. J. M. Cardoso, A. Ghoggal, The Use of a Modified Prony Method to Track the Broken Rotor Bar Characteristic Frequencies and Amplitudes in Three-Phase Induction Motors, in IEEE Transactions on Industry Applications, Vol. 51, (Issue 3): 2136-2147, 2015.

A. F. Aimer, A. H. Boudinar, A. Bendiabdellah, C. Mokhtar, Effet de fenêtrage sur la résolution de la DSP et son apport dans le diagnostic des defaults rotoriques du moteur asynchrone, International Conference on Industrial Engineering and Manufacturing ICIEM’10, May, Batna, Algeria, 9-10, 2010.

J. F. Kaiser, R. W. Schafer, On the Use of I0-Sinh Window for Spectrum Analysis, IEEE Transactions on Acoustics, Speech, And Signal Processing, Vol. 28 (Issue 1): 105-107, 1980.

A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-time signal processing, (2nd edition, Prentice Hall, New Jersey, 1999).

F. J. Harris, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform, Proceedings of the IEEE, Vol. 66 (Issue 1): 51-83, 1978.

M. E. H. Benbouzid, A review of induction motors signature analysis as a medium for faults detection, IEEE Trans. Ind. Electronics, Vol. 47 (Issue 5): 984-993, 2000.

Elbouchikhi, E., Choqueuse, V., Benbouzid, M., Condition Monitoring of Induction Motors Based on Stator Currents Demodulation, (2015) International Review of Electrical Engineering (IREE), 10 (6), pp. 704-715.

Bazi, S., Nait Said, M., Extreme Learning Machines and Particle Swarm Optimization for Induction Motor Faults Detection and Classification, (2015) International Review of Electrical Engineering (IREE), 10 (4), pp. 501-509.

Sen, T., Bansal, H., Dynamic Modelling and Fault Diagnosis of an Induction Motor, (2014) International Review on Modelling and Simulations (IREMOS), 7 (4), pp. 575-583.

Meo, S., Ometto, A., Rotondale, N., Diagnostic-oriented modelling of induction machines with stator short circuits, (2012) International Review on Modelling and Simulations (IREMOS), 5 (3), pp. 1202-1209.

Gentile, G., Meo, S., Ometto, A., Induction motor current signature analysis to diagnostics, of stator short circuits, (2003) IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2003 - Proceedings, art. no. 1234545, pp. 47-51.


  • There are currently no refbacks.

Please send any question about this web site to
Copyright © 2005-2024 Praise Worthy Prize