Open Access Open Access  Restricted Access Subscription or Fee Access

Firefly Algorithm Optimization of High Efficiency Induction Machine Using Inverse Problem

Hania Ladaycia(1*), Ahcene Boukadoum(2), Mourad Mordjaoui(3)

(1) 20 August 1955 Skikda University, Algeria
(2) 20 August 1955 Skikda University, Algeria
(3) 20 August 1955 Skikda University, Algeria
(*) Corresponding author


DOI: https://doi.org/10.15866/ireaco.v11i2.13489

Abstract


The design of electromagnetic actuators is increasingly complex and needs to be more efficient on a panel of criteria increasingly wide. The challenge offered to design engineers is great. It is therefore essential to integrate new tools and methodologies in the design process to meet this challenge. This paper presents a Firefly Algorithm (FA) for optimizing the Induction Motor (IM) design by using an inverse problem formulation to increase efficiency and minimizing rotor, stator and iron losses. Effectiveness and robustness of the proposed approach are verified by a comparison with those obtained by conventional and direct approaches. The obtained results show that the efficiency of the motor is increased by 1.15% and the losses are reduced by 5% compared to those obtained by both direct problem and conventional methods.
Copyright © 2018 Praise Worthy Prize - All rights reserved.

Keywords


Design; Inverse Problem; Direct Problem; Optimization; Firefly Algorithm

Full Text:

PDF


References


Bayindir, R., & Mehmet, S. (2011). A Parameter Monitoring System for Induction Motors based on zigbee protocol. Gazi University Journal of Science, 24(4), 763-771.
http://dx.doi.org/10.21275/v4i12.nov152109

Li, M., Silva, R., & Lowther, D. (2016). Global and local meta-models for the robust design of electrical machines. International Journal of Applied Electromagnetics and Mechanics, 51(s1), S89-S95.‏
http://dx.doi.org/10.3233/jae-2013

Duan, Y., & Ionel, D. M. (2013). A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. IEEE Transactions on Industry Applications, 49(3), 1268-1275.
http://dx.doi.org/10.1109/tia.2013.2252597

Sakthivel, V. P., & Subramanian, S. (2011, March). Energy conservation through improved design of three-phase squirrel cage induction motor using BF optimization algorithm. In Computer, Communication and Electrical Technology (ICCCET), 2011 International Conference on (pp. 327-332). IEEE.
http://dx.doi.org/10.1109/icccet.2011.5762495

Ni, R., Xu, D., Wang, G., Gui, X., Zhang, G., Zhan, H., & Li, C. (2016). Efficiency enhancement of general AC Drive system by remanufacturing induction motor with interior permanent-magnet rotor. IEEE Transactions on Industrial Electronics, 63(2), 808-820.‏
http://dx.doi.org/10.1109/tie.2015.2477478

e Silva, M. D. C., Ferreira Filho, A. L., Neves, A. B. F., & Mendonça, M. V. B. (2016). Effects of sequence voltage components on torque and efficiency of a three-phase induction motor. Electric Power Systems Research, 140, 942-949.‏
http://dx.doi.org/10.1016/j.epsr.2016.03.051

Ni, R., Xu, D., Wang, G., Gui, X., Zhang, G., Zhan, H., & Li, C. (2016). Efficiency enhancement of general AC Drive system by remanufacturing induction motor with interior permanent-magnet rotor. IEEE Transactions on Industrial Electronics, 63(2), 808-820.‏
http://dx.doi.org/10.1109/tie.2015.2477478

Han, P. W., Seo, U. J., Choi, J. H., Chun, Y. D., Koo, D. H., & Lee, J. (2012). Optimizing design variables for high efficiency induction motor considering cost effect by using genetic algorithm. Journal of Electrical Engineering and Technology, 7(6), 948-953.
http://dx.doi.org/10.5370/jeet.2012.7.6.948

Zhang, D., Park, C. S., &Koh, C. S. (2012). A new optimal design method of rotor slot of three-phase squirrel cage induction motor for NEMA class D speed-torque characteristic using multi-objective optimization algorithm. IEEE transactions on magnetics, 48(2), 879-882E.
http://dx.doi.org/10.1109/tmag.2011.2174040

Lee, G., Min, S., & Hong, J. P. (2013). Optimal shape design of rotor slot in squirrel-cage induction motor considering torque characteristics. IEEE Transactions on Magnetics, 49(5), 2197-2200B.
http://dx.doi.org/10.1109/tmag.2013.2239626

Çunkaş, M., &Akkaya, R. (2006). Design optimization of induction motor by genetic algorithm and comparison with existing motor. Mathematical and Computational Applications, 11(3), 193-204. (pp. 341-346). IEEE.
http://dx.doi.org/10.3390/mca11020193

Williamson, S., & McClay, C. I. (1996). Optimization of the geometry of closed rotor slots for cage induction motors. IEEE Transactions on Industry Applications, 32(3), 560-568.
http://dx.doi.org/10.1109/28.502167

Zhang, D., Park, C. S., & Koh, C. S. (2012). A new optimal design method of rotor slot of three-phase squirrel cage induction motor for NEMA class D speed-torque characteristic using multi-objective optimization algorithm. IEEE transactions on magnetics, 48(2), 879-882.‏
http://dx.doi.org/10.1109/tmag.2011.2174040

Faiz, J., & Sharifian, M. B. (2001). Optimal design of three phase induction motors and their comparison with a typical industrial motor. Computers & Electrical Engineering, 27(2), 133-144.‏
http://dx.doi.org/10.1016/s0045-7906(00)00010-0

Faiz, J., Ghaneei, M., Keyhani, A., Proca, A.B., “Optimum Design of Induction Motors for Electric Vehicles”, Electric Power Components and Systems, Vol. 28, pp. 1177 – 1194, 2000.
http://dx.doi.org/10.1080/073135600449053

Tutelea, L., & Boldea, I. (2010, May). Induction motor electromagnetic design optimization: Hooke Jeeves method versus genetic algorithms. In Optimization of Electrical and Electronic Equipment (OPTIM), 12th 2010 International Conference on (pp. 485-492). IEEE.‏
http://dx.doi.org/10.1109/optim.2010.5510353

Wieczorek, J. P., Gol, O., & Michalewicz, Z. (1998). An evolutionary algorithm for the optimal design of induction motors. IEEE Transactions on Magnetics, 34(6), 3882-3887.‏
http://dx.doi.org/10.1109/20.728298

Koechli, C., Fussell, B.K., Prina, S.R., James, D.A., Perriard, Y., “Design optimization of induction motors for aerospace applications”, IEEE Industry Applications Conference, Vol. 4, pp. 2501-2505, 2004.
http://dx.doi.org/10.1109/ias.2004.1348826

Nasar, S. A., & Boldea, I. (2002). The induction machine handbook. Electric Power Engineering Series, Boca ra-ton, Florida, USA: CRC Press LLC.
http://dx.doi.org/10.1201/9781420042658

Anatychuk, L. I., Luste, O. J., Kuz, R. V., & Strutinsky, M. N. (2011). Inverse problems of thermoelectricity. Journal of electronic materials, 40(5), 856-861.
http://dx.doi.org/10.1007/s11664-011-1595-z

Henriques, J. C. C., da Silva, F. M., Estanqueiro, A. I., & Gato, L. M. C. (2009). Design of a new urban wind turbine airfoil using a pressure-load inverse method. Renewable Energy, 34(12), 2728-2734.
http://dx.doi.org/10.1016/j.renene.2009.05.011

Wang, X. D., Huang, Y. X., Cheng, C. H., Jang, J. Y., Lee, D. J., Yan, W. M., & Su, A. (2010). An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell. International Journal of Hydrogen Energy, 35(9), 4247-4257.
http://dx.doi.org/10.1016/j.ijhydene.2010.02.059

Anatychuk, L. I., Luste, O. J., Kuz, R. V., & Strutinsky, M. N. (2011). Inverse problems of thermoelectricity. Journal of Electronic Materials, 40(5), 856-861.
http://dx.doi.org/10.1007/s11664-011-1595-z

Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36-50.
http://dx.doi.org/10.1504/ijsi.2013.055801

Yang, X. S. (2009, October). Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms (pp. 169-178). Springer Berlin Heidelberg.
http://dx.doi.org/10.1007/978-3-642-04944-6_14

Yunus, M., Djalal, M., Marhatang, M., Optimal Design Power System Stabilizer Using Firefly Algorithm in Interconnected 150 kV Sulselrabar System, Indonesia, (2017) International Review of Electrical Engineering (IREE), 12 (3), pp. 250-259.
http://dx.doi.org/10.15866/iree.v12i3.11136

Kota, P., Gaikwad, A., Fireflies Algorithm Based Optimal Scrambling to Reduce PAPR in SFBC Based MIMO-OFDM, (2017) International Journal on Communications Antenna and Propagation (IRECAP), 7 (7), pp. 626-634.
http://dx.doi.org/10.15866/irecap.v7i7.13567

Rajagukguk, A., Priananda, C., Riawan, D., Ashari, M., Prototype of Power Optimization Based on Converter Topologies Reconfiguration Using PV String Smart Clustering Method for Static Miniature Photovoltaic Farm Under Partially Shaded Condition, (2017) International Review of Automatic Control (IREACO), 10 (4), pp. 289-295.
http://dx.doi.org/10.15866/ireaco.v10i4.11421

Dileep, M., Surekha, K., Vishnu, N., Ascent Phase Trajectory Optimization of Launch Vehicle Using Theta-Particle Swarm Optimization with Different Thrust Scenarios, (2016) International Review of Aerospace Engineering (IREASE), 9 (6), pp. 200-207.
http://dx.doi.org/10.15866/irease.v9i6.10521

Kerdphol, T., Qudaih, Y., Mitani, Y., Optimal Battery Energy Storage Size Using Particle Swarm Optimization for Microgrid System, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 277-285.
http://dx.doi.org/10.15866/iree.v10i2.5350

Muthukumar, K., Jayalalitha, S., Ramaswamy, M., PSO Embedded Artificial Bee Colony Algorithm for Optimal Shunt Capacitor Allocation and Sizing in Radial Distribution Networks with Voltage Dependent Load Models, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 305-320.
http://dx.doi.org/10.15866/iree.v10i2.5481


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2020 Praise Worthy Prize