Open Access Open Access  Restricted Access Subscription or Fee Access

A Novel Method for Computing the Lyapunov Exponent Based on Differential Transform Method


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireaco.v9i5.9790

Abstract


This paper proposed a new analytic method to calculate the Lyapunov exponent based on the Differential Transform Method (DTM). In this work, the DTM method is applied for finding approximate variable coefficients. In this method, first the time series of the dynamical system is estimated based on DTM method, then the Lyapunov exponent is calculated analytically. The Lorenz system and the Colpitts oscillator are used as a practical case study of this research to validate the results. Simulation results are used to show the main points of this paper. We have calculated of the Lyapunov exponent based on DTM method for the first time.
Copyright © 2016 Praise Worthy Prize - All rights reserved.

Keywords


Analytic; Calculate; Differential Transform Method; Lyapunov Exponent; Time Series

Full Text:

PDF


References


C. Wegener, and M.P. Kennedy, RF chaotic Colpitts oscillator. Proceedings of an international workshop on nonlinear dynamics of electronic systems NDES’95, Dublin Ireland, 255–258, 1995.
http://dx.doi.org/10.1142/9789814534321

A.L. Baranovski, and W. Schwarz, Chaotic and random point processes: analysis design and applications to switch systems, IEEE Transactions on Circuits and Systems, Vol. 50: 1081–1089, 2003.
http://dx.doi.org/10.1109/tcsi.2003.815223

K.M. Cuomo, A.V. Oppenheim, and S.H. Strogatz, Synchronization of Lorenze-based chaotic circuits with applications to communications, IEEE Trans. Circuit Systems, Vol. 40: 626– 632, 1993.
http://dx.doi.org/10.1109/82.246163

K. Briggs, Simple experiments in chaotic dynamics. American Journal of Phys, Vol. 55: 3–9, 1998.
http://dx.doi.org/10.1119/1.15297

J.A. Maldonado, and J.A. Hernandez, Chaos Theory Applied to Communications -- Part I: Chaos Generators. IEEE Electronics, Robotics and Automotive Mechanics Conference, 55–59. 2007.
http://dx.doi.org/10.1109/cerma.2007.4367660

N. MacDonald, and R.R. Whitehead, Introducing students to nonlinearity: computer experiments with Burgers mappings. Eur. J. Phys, Vol, 6: 143–147, 1985.
http://dx.doi.org/10.1088/0143-0807/6/3/004

H.N. Nunez Yepez, A.L. Salas Brito, C.A. Vargas, L.A. Vicente, Chaos in a dripping faucet. Eur. J. Phys, Vol. 10: 99–105, 1989.
http://dx.doi.org/10.1088/0143-0807/10/2/005

E. Ubeyli, and I. Guler, Detection of electrocardio-graphies changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks. Journal of Engineering Applications of Artificial Intelligence, Vol. 17: 567–576, 2004.
http://dx.doi.org/10.1016/s0952-1976(04)00082-x

M.T. Rosenstein, J.J. Collins, and C.J.A. De Luca, Practical method for calculating largest Lyapunov exponents from small data sets. Physical D, Vol. 65: 117–134, 1993.
http://dx.doi.org/10.1016/0167-2789(93)90009-p

J.B. Gao. J. Hu, W.W. Tung., and Y.H. Cao, Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Journal of Phys, Vol. 74(Issue 6): 066204-1 – 066204-9, 2006.
http://dx.doi.org/10.1103/physreve.74.066204

C.S. Poon, M. Barahona, Titration of chaos with added noise, Proc. Natl. Acad. Sci, 7107–7112, 2001.
http://dx.doi.org/10.1073/pnas.131173198

G.A. Gottwald, and I. Melburne, Testing for chaos in deterministic systems with noise. Journal of Physica D, Vol. 212: 100–110, 2005.
http://dx.doi.org/10.1016/j.physd.2005.09.011

Z. Qin, and L. Shan, A method for detecting chaotic vibration based on continuous wavelet transform. Int. J. Sensing, Computing and Control, Vol. 1(Issue 2): 125-132, 2011.
http://dx.doi.org/10.12928/telkomnika.v13i2.1430

A. Stefanski, Lyapunov exponent of systems whit noise and fluctuating parametars. Journal of Theoreti-cal and Applied Mechanics, Vol. 46(Issue 3): 665-678. 2008.
http://dx.doi.org/10.1007/1-4020-3268-4_46

T.L. Yao, H.F. Liu, J.L. Xu, and W.F. Li, Lyapunov exponent spectrum from noisy time-Series. International Journal of Bifurcation and Chaos, Vol. 23: 1-12, 2013.
http://dx.doi.org/10.1142/s0218127413501034

H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time-series. Physics Letters A, Vol. 185: 77-87, 1994.
http://dx.doi.org/10.1016/0375-9601(94)90991-1

A. Stefanski, A. Dabrowski, and T. Kapitaniak, Evaluation of the largest Lyapunov exponent in dynamical systems with time delay. Chaos_Solitons and Fractals, 1651-1659, 2005.
http://dx.doi.org/10.1016/j.chaos.2004.06.051

S. Sadri, and C.Q. Wu, Modified Lyapunov exponent, new measure of dynamics. Nonlinear Dyn, Vol. 78: 2731-2750, 2014.
http://dx.doi.org/10.1007/s11071-014-1621-9

C. Yang, and C.Q. Wu, A robust method on estimation of Lyapunov exponents from a noisy time series. Nonlinear Dyn, Vol. 64: 279–292, 2010.
http://dx.doi.org/10.1007/s11071-010-9860-x

B.J. Dingwell, Lyapunov exponents (Wiley Encyclopedia of Biomedical Engineering, New York, 2006).
http://dx.doi.org/10.1002/9780471740360.ebs0702

H. Kantz, and T. Schreiber, Nonlinear time-series analysis (Cambridge University Press, 2004).
http://dx.doi.org/10.1017/cbo9780511755798

J.B. Dingwell, and L.C. Marin, Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. Journal Biomech, Vol. 39: 444–452, 2006.
http://dx.doi.org/10.1016/j.jbiomech.2004.12.014

C. Yang, and C.Q. Wu, On Stability analysis via Lyapunov exponents calculated from a time-series using nonlinear mapping a case study. Nonlinear Dyn, Vol. 59(Issue 1): 239–257, 2009.
http://dx.doi.org/10.1007/s11071-009-9535-7

Ghorbani, R. and Wu, Q. Optimal neural network stabilization of bipedal robots using genetic algorithm. Eng Appl Artif Intell, Vol. 20: 473–480, 2007.
http://dx.doi.org/10.1016/j.engappai.2006.09.007

A.M.L. Jiminez, C.C. Reyand, and A.R.G. Torresb, Effect of parameter calculation in direct estimation of the Lyapunov exponent in short time-series. Discrete Dynamics in Nature and Society, Vol. 7(Issue 1): 41-52, 2002.
http://dx.doi.org/10.1080/10260220290013507

A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano, Determining Lyapunov exponent from a time-series. North-Holland Physics Publishing Division. Amsterdam, 285-317, 1985.
http://dx.doi.org/10.1016/0167-2789(85)90011-9

J. Mumkhamar, Chaos in a fractional order logisitic map. Frac Calc Appl Anal, 511–519, 2013.
http://dx.doi.org/10.12785/jfca

I. Djurovic, and V. Rubezi, Chaos detection in chaotic systems with large number of components in spectral domain. Signal Processing, Vol. 88(Iusse 9): 1760-1765, 2008.
http://dx.doi.org/10.1016/j.sigpro.2008.03.003

A. Arikoglu, and I. Ozkol, Solution of boundary value problems for integro-differential equations by using differential transform method. Appl. Math. Comput, Vol. 68: 1145–1158, 2005.
http://dx.doi.org/10.1016/j.amc.2004.10.009

F. Mirzaee, Differential Transform Method (DTM) for solving linear and nonlinear systems of ordinary differential equations. Applied Mathematical Sciences, Vol. 5(Issue 70): 3465-3472, 2011.
http://dx.doi.org/10.1007/978-1-4684-9467-9_4

F. Setoudeh, and M. Dousti, Chaotic Behavior of Voltage Control Oscillator based on Colpitts Oscillator. Journal of Control Engineering and Applied Informatics, Vol. 16(Issue 4): 91-98, 2014.
http://dx.doi.org/10.1109/rme.2005.1542962

E. Lindberg, A. Tamasevicius, G. Mykolaitis, and S. Bumeliene, Approaching threshold frequency in chaotic Colpitts oscillator. Int. J. Bifur Chaos, Vol. 17: 3449–3453, 2007.
http://dx.doi.org/10.1142/s0218127407019196

L.S Larson, L.S. Tsimring, and J.M. Liu, Digital communications using chaos and nonlinear dynamics (Springer, 2006).
http://dx.doi.org/10.1007/0-387-29788-x

S. Bumeliene, A. Tamasevicius, G. Mykolaitis, A. Baziliauskas, and E. Lindberg, Numerical investigation and experimental demonstration of chaos from twostage Colpitts oscillator in the Ultrahigh frequency range. Nonlinear Dynamical, Vol. 44: 167–172, 2006.
http://dx.doi.org/10.1007/s11071-006-1962-0

A. Tamasevicius, G. Mykolaitis, S. Bumeliene, A. Cenys, Anagnostopoulos, A.N. and E. Lindberg, Improved chaotic Colpitts oscillator for the ultrahigh frequencies. Electron Lett, Vol. 37: 549–551, 2001.
http://dx.doi.org/10.1049/el:20010398

V. Kamdoum Tamba, H.B. Fotsin, J. Kengne, E.B. Megam Ngouonkadi, and P.K. Talla, Emergence of complex dynamical behaviors in improved Colpitts oscillators: antimonotonicity, coexisting attractors, and metastable chaos. International Journal of Dynamic control, Vol. 16: 1–12, 2016.
http://dx.doi.org/10.1007/s40435-016-0223-4

S. Rasappan, and N.K. Jothi, Control of Colpitts oscillator via adaptive nonlinear control. International Conference on Science Engineering and Management Research (ICSEMR), 27-29, 2014.
http://dx.doi.org/10.1109/icsemr.2014.7043541

G.H. Li, S.P. Zhou, and K. Yang, Controlling chaos in Colpitts oscillator. Chaos. Solitons and Fractals, Vol. 33: 582–587, 2007.
http://dx.doi.org/10.1016/j.chaos.2006.01.072

J.Y. Effa, B.Z. Essimbi, and J.MuchoNgudam, Synchronization of improved chaotic Colpitts oscillators using nonlinear feedback control. J. Nonlinear Dyn, Vol. 58: 39–47, 2009.
http://dx.doi.org/10.1007/s11071-008-9459-7

L.D. Lasemidis, J.C. SackeUares, H.P. Zaveri, and W.J. Williams, Phase Space Topography and the Lyapunov Exponent of Electrocorticograms in Partial Seizures. Brain Topography, 187-201, 1990.
http://dx.doi.org/10.1007/bf01140588

S. Sarkar, S.A. Sarkar, and B.C. Sarkar, On the dynamics of a periodic Colpitts oscillator forced by periodic and chaotic signals. Commun Nonlinear Sci Numer Simulat, Vol. 19: 2883,2896, 2014.
http://dx.doi.org/10.1016/j.cnsns.2014.01.004


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2022 Praise Worthy Prize